Lecture Theoretical Physics III — fall term 2002/2003 — Michael Flohr

Exercises VI
November 26th

E6.1 Expansion of the planar wave in terms of Bessel functions
The goal of this assignment is to prove the identity
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describing the planar wave, i.e. the motion of a free particle, in spherical coordinates.
Here, the spherical Bessel function j,(kr) is the solution (regular at the origin) of the

free radial Schrodinger equation with angular momentum ¢ and energy E = h; T]fj.
(1) Explain why the expansion e*"™ = "7 an:_g cKm(rg')jgﬂEV)ng(ﬁ, ©) holds.

2) Show elfreos? = $02 2“1Agjg(k;r)Pg(cos ) for the choice k = ké..
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4) With Rodrigues’ formula, show: f_l dng( ) ikrz — 1(22;%)5;(16 e+ O((kr)“l).
)
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From the asymptotics of j,(z) for z — 0, deduce that A, = i’y/47 (20 + 1).
Finally, using the addition theorem for Yy,,, show the general formula.
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E6.2 Partial wave decomposition
In the lecture, the scattering amplitude was written in terms of Legendre polynomials:
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(1) Sketch the angular dependance of the differential cross section 42 (9)) for pure s
and p wave scattering, respectively, and for the interference of the two terms.

(2) Sketch the Argand amplitude Ay = k fy in the complex plane.

(3) Write the total cross section oo as a function of the partial total cross sections
o¢ = 4m(2¢ + 1)5 sin?6,(k). Which function sets a bound on the total cross
section? When is the value of this bound really taken?

(4) State a relation between o and the forward scattering amplitude.

If U’ZT(T) solves the radial Schrodinger equation then for the scattering phase one has:

2mk [ 2mE
sin g, = —i/ rV (r)ue(r)je(kr)dr with k? = 7;:2
0

72
The proof of this formula uses the asymptotics of the solutions and applies the Wron-
skian (Theoretical Physics II, H4.3). One obtains the first Born approximation (equiv-
alent to the ansatz in E5.1) by replacing the actual, but in general unknown solution
ug(r) by the solution rj,(kr) of the free Schrodinger equation.
(5) Let kR < 1. Compute &g and oy for a potential well or barrier V (r) = VoO(R—r).
(6) Calculate the scattering length a = —limy_,o fo(k) and write o¢ in terms of a.
(7) Compare the scattering phases for a repulsive and an attractive potential. How

does the wave function change compared to the free s wave? Sketch ry(kr).
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Homework VI
Return: December 3rd

H6.1 Scattering on a hard sphere
For a radially symmetric potential V' (r) vanishing for » > a, one can write the solution
of the Schrodinger equation for r > a as

(1) = 21 3 iie(%—l— 1)A(r)Py(cos 9),
T =0

where the radial wave functions for r > a are given by
Ay(r) = €% (cos 8pjy(kr) — sin Sene(kr)) ,

such that one has A,(r) = jy(kr) for the free case. Here, jo(2) = (—2)* (18z)£ % are

z

called spherical Bessel and ny(z) = —(—2)* (%@)Z €% are called spherical Neumann

functions. Consider the scattering problem for an infinitely hard sphere of radius a.

(1) From the condition A;(a) = 0, deduce a formula for tan d,.

(2) Give the total cross section oot in the limits of low (ka < 1) and high energies
(ka > 1), respectively. Make use of the asymptotic behaviour of j, and n, in
order to show for ka < 1 that the sum is dominated by the s wave contribution.
For ka > 1, break the sum at {nax ~ ka. With 2n+ 1)1 =1-3-5-...-(2n+1),

the asymptotic behaviour is:
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(3) Compare the results with the classically expected ones.

(10 points)
H6.2 Resonance scattering on an idealised spherical shell

With the notation of H6.1, consider the potential V(r) = )\%(5(7‘ —a).

(1) Use the matching conditions at 7 = a in order to find an equation for tan d, fixing
the scattering phases. For r < a take the ansatz Ay(r) ~ js(kr) and argue why
the ng(kr) are not allowed to appear for r < a. Show that the limit A — oo leads
to the expression for the scattering on an infinitely hard sphere.

(2) Restrict the following considerations on s wave scattering in the low energy limit,
i.e. Aa > ka. The energy of the scattering particles is F, = h;fj. Show that in
this limit resonance behaviour will appear for certain energies. In this limit one
has | tan ka| < 1 and resonance appears for vanishing cot dg.

(3) Expand the scattering amplitude fo = m around the resonance energy

1

F,s and express the result by the resonance width I' = Qe p—

(4) State the total cross section. How does this resonance behave in the limit A — oo?
(20 points)




