Lecture Theoretical Physics III - fall term 2002/2003 - Michael Flohr

Exercises VII

December 3rd

E7.1 Algebra of fermion operators

Consider a pair of an anticommuting fermionic creation and annihilation operator, i.e. $\left\{a, a^{+}\right\}=1$. The occupation number operator is $N=a^{+} a$.
(1) Let $|n\rangle$ be an eigenstate of N with eigenvalue n. Is n real?
(2) Show that $n \geq 0$. Also show that n is bounded from above.
(3) Show that $a^{+}|n\rangle$ and $a|n\rangle$ are eigenstates of N. Compute the eigenvalues.
(4) Figure out which values n can take. Discuss Pauli's principle.
(5) Which statements on n can be made in the bosonic case $\left[a, a^{+}\right]=1$?

E7.2 Low energy states of an interacting Bose gas
We would like to consider the ground state of a many particle system as a vacuum, its lowest excitations are called quasi particles. The so-called Bogoliubov transformation connects the creation and annihilation operators of quasi and elementary particles. The Hamiltonian for bosons with interaction potential u in a volume V reads

$$
H=\sum_{\vec{p}} \frac{\vec{p}^{2}}{2 m} a_{\vec{p}}^{+} a_{\vec{p}}+\frac{1}{2} \sum_{\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{1}^{\prime}, \vec{p}_{2}^{\prime}} \delta_{\vec{p}_{1}+\vec{p}_{2}, \vec{p}_{1}^{\prime}+\vec{p}_{2}^{\prime}} U_{\vec{p}_{1}^{\prime} \vec{p}_{2}^{\prime} \mid \vec{p}_{1}, \vec{p}_{2}} a_{\vec{p}_{1}^{\prime}}^{+} a_{\vec{p}_{2}^{\prime}}^{+} a_{\vec{p}_{2}} a_{\overrightarrow{p_{1}}}
$$

where the interaction term $U_{\vec{p}_{1}^{\prime} \vec{p}_{2}^{\prime} \mid \vec{p}_{1} \vec{p}_{2}}=\frac{1}{V} \int \mathrm{e}^{i \vec{p} r / \hbar} u(\vec{r}) \mathrm{d}^{3} r$ for momentum transfer $\vec{p}=\vec{p}_{2}-\vec{p}_{2}^{\prime}=\vec{p}_{1}^{\prime}-\vec{p}_{1}$ is the Fourier transform of a potential $u(\vec{r})$. The delta function for the conservation of momentum is due to the dependence of the potential on the relative distance of the two particles (which can thus be expressed by $u(\vec{r})$) only. For low temperatures only small momenta will arise, thus in lowest order we have

$$
H=\sum_{\vec{p}} \frac{\vec{p}^{2}}{2 m} a_{\vec{p}}^{+} a_{\vec{p}}+\frac{u_{0}}{2 V} \sum_{\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{1}^{\prime}, \vec{p}_{2}^{\prime}} \delta_{\vec{p}_{1}+\vec{p}_{2}, \vec{p}_{1}^{\prime}+\vec{p}_{2}^{\prime}} a_{\vec{p}_{1}^{\prime}}^{+} a_{\vec{p}_{2}^{\prime}}^{+} a_{\vec{p}_{2}} a_{\vec{p}_{1}}
$$

where the interaction term is approximated by $u_{0}=\int u(\vec{r}) \mathrm{d}^{3} r$. Looking at the lowest excitations of the interacting Bose gas, almost all particles should be in the ground state such that the particle number N is approximately N_{0}. Now we expand the interaction term in such a way that at most two of the four momenta do not vanish.
(1) Show $a_{0}^{+} a_{0}^{+} a_{0} a_{0}=N_{0}^{2}-N_{0} \approx N^{2}-2 N \sum_{\vec{p} \neq 0} a_{\vec{p}}^{+} a_{p}$.
(2) Compute how a_{0} and a_{0}^{+}act on an n-particle state $\Phi_{n}=\frac{1}{\sqrt{n!}}\left(a_{0}^{+}\right)^{n}|0\rangle: a_{0} \Phi_{n}=$ $\sqrt{n} \Phi_{n-1}, a_{0}^{+} \Phi_{n}=\sqrt{n+1} \Phi_{n+1}$. Deduce that a_{0} and a_{0}^{+}can be represented as multiplication by \sqrt{n} for large n. Show that

$$
H \approx \frac{u_{0} N^{2}}{2 V}+\frac{u_{0} N}{2 V} \sum_{\vec{p} \neq 0}\left(a_{\vec{p}}^{+} a_{-\vec{p}}^{+}+a_{\vec{p}} a_{-\vec{p}}+2 a_{\vec{p}}^{+} a_{\vec{p}}\right)+\sum_{\vec{p} \neq 0} \frac{\vec{p}^{2}}{2 m} a_{\vec{p}}^{+} a_{\vec{p}}
$$

(3) For $\alpha_{p} \in \mathbb{R}$ with $\left|\alpha_{p}\right|<1$ consider the Bogoliubov transformation from a_{p} to b_{p} :

$$
b_{\vec{p}}=\frac{a_{\vec{p}}+\alpha_{\vec{p}} a_{-\vec{p}}^{+}}{\sqrt{1-\alpha_{\vec{p}}^{2}}} \text { und } b_{\vec{p}}^{+}=\frac{a_{\vec{p}}^{+}+\alpha_{\vec{p}} a_{-\vec{p}}}{\sqrt{1-\alpha_{\vec{p}}^{2}}} .
$$

Show

$$
\left[b_{\vec{p}}, b_{\vec{p}^{\prime}}^{+}\right]=\delta_{\vec{p}, \vec{p}^{\prime}},\left[b_{\vec{p}}, b_{\vec{p}^{\prime}}\right]=\left[b_{\vec{p}}^{+}, b_{\vec{p}^{\prime}}^{+}\right]=0,
$$

i.e. the $b_{\vec{p}}, b_{\vec{p}}^{+}$correspond to bosonic quasi particles, so-called bogolons.
(4) Show that by an appropriate choice of α_{p} the Hamiltonian becomes diagonal:

$$
H=E_{0}+\sum_{\vec{p} \neq 0} \varepsilon(\vec{p}) b_{\vec{p}}^{+} b_{\vec{p}}
$$

Compute E_{0} and $\varepsilon(\vec{p})$ and interpret these quantities.

Homework VII

Return: December 10th
H7.1 Hamiltonian of the one dimensional Hubbard model
(20 points)
N Elektronen placed on a chain with sites x_{i} (with distance a) are described by

$$
H_{0}=-t \sum_{i=1}^{N} \sum_{\sigma}\left(a_{\sigma}^{+}\left(x_{i}\right) a_{\sigma}\left(x_{i}+a\right)+a_{\sigma}^{+}\left(x_{i}\right) a_{\sigma}\left(x_{i}-a\right)\right),
$$

where the two terms correspond to the motion to the left and to the right. The $a\left(x_{i}\right)$ satisfy canonical anticommutation relations $\left\{a_{\sigma}\left(x_{i}\right), a_{\sigma^{\prime}}^{+}\left(x_{j}\right)\right\}=\delta_{\sigma, \sigma^{\prime}} \delta_{x_{i}, x_{j}}$. The spin indices σ can take the values $\uparrow \equiv \frac{1}{2}$ and $\downarrow \equiv-\frac{1}{2}$.
(1) Show that in the momentum representation H_{0} has the following form:

$$
H_{0}=-\frac{1}{2 \pi} \sum_{\sigma} \int \mathrm{d} k \varepsilon(k) a_{\sigma}^{+}(k) a_{\sigma}(k) .
$$

State the explicit form of the dispersion relation $\varepsilon(k)$. For that purpose, make the transition (in the limit of a long chain) from the discrete Fourier transform $a_{\sigma}(x)=\frac{1}{L} \sum_{k} \mathrm{e}^{\mathrm{i} k x} a_{\sigma}(k)$ to the continuous one $a_{\sigma}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d} k \mathrm{e}^{\mathrm{i} k x} a_{\sigma}(k)$.
(2) Consider now an additional interaction (what does that mean physically?)

$$
H^{\prime}=\frac{U}{2} \sum_{i, \sigma} a_{\sigma}^{+}\left(x_{i}\right) a_{\sigma}\left(x_{i}\right) a_{-\sigma}^{+}\left(x_{i}\right) a_{-\sigma}\left(x_{i}\right) .
$$

Show that the $M_{\sigma}=\sum_{i} a_{\sigma}^{+}\left(x_{i}\right) a_{\sigma}\left(x_{i}\right)$ have good quantum numbers with respect to the total Hamiltonian $H=H_{0}+H^{\prime}$. What is the physical meaning of M_{σ} ?
(3) The three components of the spin operator are defined by (σ^{i} are Pauli's matrices)

$$
S_{n}^{i}=\frac{\hbar}{2} \sum_{\sigma, \sigma^{\prime}} a_{\sigma}^{+}\left(x_{i}\right) \sigma_{\sigma \sigma^{\prime}}^{i} a_{\sigma^{\prime}}\left(x_{i}\right) .
$$

Do these operators satisfy the angular momentum algebra?
H7.2 Distribution function
(10 points)
Consider non-interacting fermions or bosons which can take states λ, with operators $\left\{a_{\lambda}, a_{\lambda^{\prime}}^{+}\right\}=\delta_{\lambda \lambda^{\prime}}$ or $\left[a_{\lambda}, a_{\lambda^{\prime}}^{+}\right]=\delta_{\lambda \lambda^{\prime}}$. Let $N_{\lambda}=a_{\lambda}^{+} a_{\lambda}$ be the number operator for λ.
(1) State the Hamiltonian H and the occupation number operator N.
(2) Let $\varrho=\mathrm{e}^{-\beta(H-\mu N)}$ be the density operator of the underlying grand canonical ensemble. First, compute the partition function $Z=\operatorname{tr}(\varrho)$ and then the average occupation number $n_{\lambda}=\frac{1}{Z} \operatorname{Spur}\left(\varrho N_{\lambda}\right)$ in the state λ for both kinds of particles.

