Lecture Theoretical Physics III - fall term 2002/2003 - Michael Flohr

Exercises VIII

December 10th
E8.1 Foundations of statistical physics, Bose-Einstein condensation
Particle with Spin S confined to a box $B=\left\{\vec{r} \in \mathbb{R}^{3} \mid 0 \leq x_{k} \leq L\right\}$ with length L and volume $V=L^{3}$ have wave functions ($\chi^{(\sigma)}$ a spinor):

$$
\psi_{\vec{n}}^{(\sigma)}(\vec{r})=\frac{1}{\sqrt{V}} \mathrm{e}^{-\frac{i}{\hbar} \vec{p} \vec{r}} \chi^{(\sigma)}, \quad \vec{p}=\vec{n} \frac{2 \pi \hbar}{L}, \vec{n} \in \mathbb{Z}^{3}, \sigma=-S, \ldots, S
$$

The $\psi_{\vec{n}}^{(\sigma)}$ are periodic: $\psi_{\vec{n}}^{(\sigma)}(L \vec{n})=\psi_{\vec{n}}^{(\sigma)}(0)$ and form an orthonormal basis for the functions in $B: \int_{V} \mathrm{~d}^{3} r\left(\psi_{\vec{n}}^{(\sigma)}(\vec{r})\right)^{*} \psi_{\vec{n}^{\prime}}^{\left(\sigma^{\prime}\right)}(\vec{r})=\delta_{\vec{n} \vec{n}^{\prime}} \delta_{\sigma \sigma^{\prime}}$. The N-particle states in 2nd quantisation are $\frac{1}{\sqrt{N!}}\left(\prod_{i=1}^{N} a_{\vec{n}_{i}, \sigma_{i}}^{+}\right)|0\rangle$. Number and energy operator read $N=\sum_{\vec{n}, \sigma} a_{\vec{n}, \sigma}^{+} a_{\vec{n}, \sigma}$ and $H=\sum_{\vec{n}, \sigma} \varepsilon(\vec{n}) a_{\vec{n}, \sigma}^{+} a_{\vec{n}, \sigma}$. The statistical operator ϱ (density operator) is given by

$$
\varrho=\frac{1}{Z} \mathrm{e}^{-\beta(H-\mu N)}, \quad Z=\operatorname{Spur} \mathrm{e}^{-\beta(H-\mu N)} \quad(\Rightarrow \operatorname{Spur} \varrho=1)
$$

Z is called partition function, μ chemical potential and with the temperature T and Boltzmann's constant k one has $\beta=\frac{1}{k T}$. The two "Lagrange multipliers" μ and β adjust the particle number and the energy. μ is the energy one needs (or gains) to add a particle to the system. In general, every thermodynamic quantity is given by the expectation value of an operator \mathcal{O} as $\langle\mathcal{O}\rangle:=\operatorname{Tr}(\mathcal{O} \varrho)$.
In H7.2 we had: $Z=\prod_{\vec{n}}\left(1 \pm \mathrm{e}^{-\beta(\varepsilon(\vec{n})-\mu)}\right)^{ \pm g}, g=2 S+1$ and $\left\langle n_{\vec{n}, \sigma}\right\rangle=\frac{1}{\mathrm{e}^{\beta(\varepsilon(\vec{n})-\mu)} \pm 1}$ for the average occupation of the state (\vec{n}, σ), where " + " is taken for fermions. We define the mean particle number $\bar{N}=\sum_{\vec{n}, \sigma}\left\langle n_{\vec{n}, \sigma}\right\rangle$ and energy $\bar{E}=\sum_{\vec{n}, \sigma} \varepsilon(\vec{n})\left\langle n_{\vec{n}, \sigma}\right\rangle$.
(1) Why is $\mu \leq 0$ for bosons? Is there a restriction on μ in the fermionic case?
(2) Establish the replacement $\sum_{\vec{n}, \sigma} \rightarrow g \frac{V}{(2 \pi \hbar)^{3}} \int \mathrm{~d}^{3} p$ in the continuum limit $V \rightarrow \infty$.

Show that the limits for $V \rightarrow \infty$ of $\frac{\bar{E}}{V}, \frac{\bar{N}}{V}$ and $\frac{\ln Z}{V}$ do exist and compute them for $\varepsilon(\vec{p})=\frac{1}{2 m} \vec{p}^{2}$. Introduce the Fermi and Bose functions

$$
\left\{\begin{array}{l}
f_{\nu}(z) \\
g_{\nu}(z)
\end{array}\right\}=\frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{\mathrm{d} x x^{\nu-1}}{\frac{1}{z} \mathrm{e}^{x} \pm 1}
$$

Which famous function of $n \in \mathbb{N}$ from number theory is $g_{n}(z=1)$?
(3) Show $\bar{E}=\frac{3}{2 \beta} \ln Z$ and compute the classical limit, defined in such a way that $z:=\mathrm{e}^{\mu / k T} \ll 1 . z$ is called fugacity. State this condition in the form $\lambda^{3} \ll \frac{V}{N}$ with the thermal wave length $\lambda=\hbar \sqrt{2 \pi \beta / m}$ and interpret it.
(4) Show that for the grand canonical potential $\Phi:=-\beta^{-1} \ln Z$ one has $\Phi=-p V$. $p:=-\frac{\partial \bar{E}}{\partial V}$ is the pressure. For that purpose show $p=\frac{2 \bar{E}}{3 V}$, before taking $V \rightarrow \infty$.
(5) In the fermionic case at $T=0$ the lowest energy levels are occupied once. The maximal momentum is called Fermi momentum \vec{p}_{F}, the energy $\frac{\left|\vec{p}_{F}\right|^{2}}{2 m}$ Fermi energy E_{F}. Show $\bar{N}=\frac{g V\left|\vec{p}_{F}\right|^{3}}{6 \pi^{2} \hbar^{3}}$ and deduce $\bar{E}=\frac{3}{5} E_{F} \bar{N}$. Argue that $\mu=E_{F}$.

As an important application of the general considerations we consider a nonrelativistic Bose gas with spin 0 for small temperatures T.
(6) Why is the fugacity bounded by $z \leq 1$? Show that $\frac{\lambda^{3} \bar{N}}{V}=g_{3 / 2}(z)$.
(7) Show that $z=1$ is reached at a critical temperature T_{c}, defined by

$$
k T_{c}=\frac{2 \pi \hbar^{2} \bar{N}^{2 / 3}}{m\left(g_{3 / 2}(1) V\right)^{2 / 3}} .
$$

(8) By considering the ground state separately, show that

$$
\bar{N}=N_{0}+N^{\prime}=\frac{1}{\frac{1}{z}-1}+\bar{N}\left(\frac{T}{T_{c}}\right)^{3 / 2} \frac{g_{3 / 2}(z)}{g_{3 / 2}(1)} .
$$

(9) Deduce that for $T<T_{c}$ the ground state is occupied macroscopically, i.e.

$$
\lim _{\bar{N} \rightarrow \infty, \overline{\bar{N}}} \text { fest } \frac{N_{0}}{\bar{N}}\left\{\begin{array}{ll}
=0 & T>T_{c} \\
>0 & T<T_{c}
\end{array} \quad\right. \text { ("thermodynamic limit"). }
$$

Also show that the other states can never be occupied macroscopically.
(10) Why is this condensation possible only for spatial dimension $d \geq 3$?

This effect was predicted in 1924 by A. Einstein following statistical observations of S. Bose. It was observed experimentally in 1995 using alcali atoms (mostly rubidium) in a quadrupole trap with $T=0.17 \mu K$, in 1998 also with atomic hydrogen.

Homework VIII

Return: Dezember 17th

H8.1 Bardeen-Cooper-Schrieffer theory

This theory (nobel price 1972) explains the superconductivity of 1st kind by so-called Cooper pairs, i.e. correlated electrons pairs with spin 0 , for which the electric resistance vanishes. The model considers two-electron excitations $|\Phi\rangle$ of the vacuum $|0\rangle$.
The Hamiltonian of a many electrons system in a solid state reads

$$
H=\sum_{\vec{k}, \sigma} \varepsilon(\vec{k}) a_{\vec{k}, \sigma}^{+} a_{\vec{k}, \sigma}-\frac{1}{2} \sum_{\vec{k}, \overrightarrow{k^{\prime}}, \vec{w}, \sigma, \sigma^{\prime}} v_{\vec{k}, \overrightarrow{k^{\prime}}, \vec{w}} a_{\vec{k}+\vec{w}, \sigma}^{+} a_{\overrightarrow{k^{\prime}}, \sigma^{\prime}}^{+} a_{\overrightarrow{k^{\prime}}+\vec{w}, \sigma^{\prime}} a_{\vec{k}, \sigma} .
$$

Here, $\vec{k}, \vec{k}^{\prime}$ are electron momenta, σ, σ^{\prime} their spin directions and \vec{w} phonon momenta, these are the quasi particles corresponding to the lattice oscillations. $v_{\vec{k}, \overrightarrow{k^{\prime}, \vec{w}}}$ gives the electron interaction induced by the interactions of the electrons and phonons, i.e. an electron with momentum $\vec{k}^{\prime}+\vec{w}$ gives the momentum \vec{w} to the lattice, which is taken by an electron with momentum \vec{k}. The spin is not changed by this interaction. With (real) coefficients $u_{\vec{k}}$ and $v_{\vec{k}}$ that will be arranged - taking care of the normalization $\left|u_{\vec{k}}\right|^{2}+\left|v_{\vec{k}}\right|^{2}=1$ - such that the energy expectation value of $|\Phi\rangle$ becomes minimal at the end of the day, the BCS ansatz for $|\Phi\rangle$ reads:

$$
|\Phi\rangle=\prod_{\vec{k}}\left(u_{\vec{k}}+v_{\vec{k}} a_{\vec{k}, \uparrow}^{+} a_{-\vec{k}, \downarrow}^{+}\right)|0\rangle .
$$

(1) Show $\langle\Phi| N|\Phi\rangle=2 \sum_{\vec{k}} v_{\vec{k}}^{2}$ for the expectation value of the particle number operator. Since we want a fixed particle number, we have to add N to H using a Lagrange multiplier, the chemical potential μ, i.e. $H^{\prime}=H-\mu N$.
(2) Using $V_{\vec{k} \vec{k}^{\prime}}=\frac{v_{\vec{k},-\vec{k}^{\prime}, \vec{k}^{\prime}-\vec{k}}+v_{-\vec{k}, \vec{k}^{\prime}, \vec{k}-\vec{k}^{\prime}}}{2}$, show that

$$
E_{0}:=\langle\Phi| H^{\prime}|\Phi\rangle=2 \sum_{\vec{k}}(\varepsilon(\vec{k})-\mu) v_{\vec{k}}^{2}-\sum_{\vec{k}, \vec{k}^{\prime}} V_{\vec{k} \vec{k}^{\prime}} u_{\vec{k}} v_{\vec{k}} u_{\vec{k}^{\prime}} v_{\vec{k}^{\prime}}
$$

(3) Show: with the gap $\Delta_{\vec{k}}=\sum_{\vec{k}^{\prime}} V_{\vec{k} \vec{k}^{\prime}} u_{\vec{k}^{\prime}} v_{\vec{k}^{\prime}}$ the condition for a minimum of (2) is:

$$
\left\{\begin{array}{c}
u_{\vec{k}}^{2} \\
v_{\vec{k}}^{2}
\end{array}\right\}=\frac{1}{2}\left(1 \pm \frac{\varepsilon(\vec{k})-\mu}{\sqrt{(\varepsilon(\vec{k})-\mu)^{2}+\Delta_{\vec{k}}^{2}}}\right)
$$

In order to understand this gap better, we consider the quasi particles of this system.
(4) Show that the ansatz $|\Phi\rangle$ for the ground state is annihilated by the operators

$$
A(\vec{k})=u_{\vec{k}} a_{\vec{k}, \uparrow}-v_{\vec{k}} a_{-\vec{k}, \downarrow}^{+}, \quad B(\vec{k})=u_{\vec{k}} a_{-\vec{k}, \downarrow}+v_{\vec{k}} a_{\vec{k}, \uparrow}^{+}
$$

(5) Show that the only nonvanishing anticommutation relations of the operators defined in (4) are $\left\{A(\vec{k}), A^{+}\left(\vec{k}^{\prime}\right)\right\}=\left\{B(\vec{k}), B^{+}\left(\vec{k}^{\prime}\right)\right\}=\delta_{\vec{k} \vec{k}^{\prime}}$.
(6) Show that $H^{\prime}-E_{0} \mathbb{1}$ is diagonal in the one-quasiparticle states $A^{+}(\vec{k})|\Phi\rangle$ and $B^{+}(\vec{k})|\Phi\rangle$ and that $E(\vec{k})=\sqrt{(\varepsilon(\vec{k})-\mu)^{2}+\Delta_{\vec{k}}^{2}}$ is the quasiparticle energy:

$$
\langle\Phi| A(\vec{k})\left(H^{\prime}-E_{0} \mathbb{1}\right) A^{+}\left(\vec{k}^{\prime}\right)|\Phi\rangle=\langle\Phi| B(\vec{k})\left(H^{\prime}-E_{0} \mathbb{1}\right) B^{+}\left(\vec{k}^{\prime}\right)|\Phi\rangle=E(\vec{k}) \delta_{\vec{k} \vec{k}^{\prime}},
$$

i.e. the quasiparticles have a nonvanishing energy $\Delta_{\vec{k}}$ even for \vec{k} at the Fermi edge (which corresponds to a free particle at rest).
But now back to the determination of $\Delta_{\vec{k}}$, for which we make use of a simple model.
(7) Show that (3) is equivalent to $\Delta_{\vec{k}}=\frac{1}{2} \sum_{\vec{k}^{\prime}} \frac{V_{\vec{k} \vec{k}^{\prime}} \Delta_{\vec{k}^{\prime}}}{\sqrt{\left(\varepsilon\left(\vec{k}^{\prime}\right)-\mu\right)^{2}+\Delta_{\vec{k}^{\prime}}^{2}}}$.
(8) Take the ansatz $V_{\vec{k} \vec{k}^{\prime}}=V_{0}$ for $|\varepsilon(\vec{k})-\mu|<\hbar \omega$ and $\left|\varepsilon\left(\vec{k}^{\prime}\right)-\mu\right|<\hbar \omega$, in all other cases zero, i.e. the interaction only takes place in the neighbourhood of the Fermi sphere (radius $\left.=E_{F}=\mu\right)$. Deduce that $\sum_{\vec{k}} \frac{1}{2 \sqrt{(\varepsilon(\vec{k})-\mu)^{2}+\Delta^{2}}}=\frac{1}{V_{0}}$, where Δ is the now \vec{k} independent value of $\Delta_{\vec{k}}$ for $|\varepsilon(\vec{k})-\mu|<\hbar \omega$, otherwise one has $\Delta_{\vec{k}}=0$.
(9) Replace the sum by an integral in (8). For that, take the ansatz $d^{3} k=\frac{(2 \pi)^{3}}{V} D(E-$ $\mu) \mathrm{d}(E-\mu)$. with the density of states $D(E-\mu)$. Assume that $\hbar \omega \ll \mu$, i.e. $D(E-\mu) \approx D(0)$ and deduce $\Delta=\frac{\hbar \omega}{\sinh \left(\frac{1}{D(0) V_{0}}\right)} \approx 2 \hbar \omega \mathrm{e}^{-1 / D(0) V_{0}}$ for $D(0) V_{0} \ll 1$.
(10) Show that the electron interaction actually lowers the energy by $\frac{1}{2} D(0) \Delta^{2}$ compared to a filled Fermi sphere (assume $\Delta \ll \hbar \omega$).
(24 points)
H8.2 Squeezed States
(1) By deriving with respect to α, show that $\left(\mathrm{e}^{\alpha x} \frac{\partial}{\partial x} f\right)(x)=f\left(\mathrm{e}^{\alpha} x\right)$ for $f: \mathbb{R} \rightarrow \mathbb{C}$.
(2) For a one dimensional harmonic oscillator, consider the normalised state $\left|\psi_{\alpha}\right\rangle=$ $C_{\alpha} \mathrm{e}^{\frac{\alpha}{2}\left(\left(a^{+}\right)^{2}-a^{2}-1\right)}|\varphi\rangle$ i where $\varphi \in \mathcal{L}^{2}(\mathbb{R})$. Use (1) and the explicit representation of a and a^{+}in position space in order to represent $\psi_{\alpha}(x)$ by $\varphi\left(x^{\prime}\right)$, i.e. find the relation $x^{\prime}(x)$. Why is $\left|\psi_{\alpha}\right\rangle$ called squezzed?
(3) Show that $S:=\mathrm{e}^{z\left(a^{+}\right)^{2}-z^{*} a^{2}}$ for $z \in \mathbb{C}$ is unitary. How does that effect C_{α} ?
(6 points)

