- [P1] Zum *Drehimpuls*: Die Eigenzustände von $(\vec{L})^2$ und L_z seien mit $|\ell, m\rangle$ bezeichnet.
 - (1) Geben Sie für $\ell=2$ die Matrizen L_+ und L_- explizit an. Berechnen Sie daraus L_x und L_y sowie den Kommutator $[L_x, L_y]$.
 - (2) Berechnen Sie den Erwartungswert $\langle \ell, m | \vec{n} \cdot \vec{L} | \ell, m \rangle$ dafür, daß der Drehimpuls in Richtung des Einheitsvektors \vec{n} zeigt. Berechnen Sie auch die Schwankung $\left(\Delta(\vec{n} \cdot \vec{L})\right)^2$.
- [P2] Mehr zum Drehimpuls: Die Kugelflächenfunktionen $Y_{\ell,m}(\varphi,\vartheta)$ bilden für gegebenes ℓ eine Basis von Eigenfunktionen für L_z und $(\vec{L})^2$. Die $Y_{\ell,m}$ sind im allgemeinen kompliziert und nicht sehr anschaulich. Für den Fall $\ell=2$ soll daher ein Zugang direkterer Art erarbeitet werden:
 - (1) Betrachten Sie die Drehimpulsalgebra in kartesischer Ortsraumdarstellung, d.h.

$$L_x = -i(y\partial_z - z\partial_y),$$

$$L_y = -i(z\partial_x - x\partial_z),$$

$$L_z = -i(x\partial_y - y\partial_x),$$

wobei $\hbar=1$ gesetzt wurde. Bilden Sie damit L_+ und L_- . Finden Sie ein homogenes Polynom $p_2(x,y,z)$ zweiten Grades, das ein Eigenzustand zu L_z und $(\vec{L})^2$ ist und das von L_+ annihiliert wird, d.h.

$$L_z p_2(x, y, z) = 2p_2(x, y, z), \quad (\vec{L})^2 p_2(x, y, z) = 6p_2(x, y, z), \quad L_+ p_2(x, y, z) = 0.$$

Hinweis: Offensichtlich braucht dieses Polynom nur von x und y abzuhängen. Es entspricht dem Zustand $|\ell,m\rangle$ mit höchstem Gewicht $m=\ell$.

- (2) Berechnen Sie nun für das soeben gefundene Polynom die Polynome $p_{2-k}(x, y, z) = (L_{-})^{k} p_{2}(x, y)$ für $k = 1, \ldots, 5$, wobei Sie Proportionalitätsfaktoren vernachlässigen dürfen.
- (3) Transformieren Sie schließlich die $p_m(x,y,z)$ in Kugelkoordinaten. Nehmen Sie dabei an, daß $x^2 + y^2 + z^2 = 1$ ist. Vergleichen Sie Ihre Resultate mit den expliziten Formeln für die $Y_{\ell,m}(\varphi,\vartheta) = e^{\mathrm{i}m\varphi}P_{\ell,m}(\cos\vartheta)$. Hierbei sind die assoziierten Legendre-Polynome definiert als

$$P_{\ell,m}(x) = (1 - x^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_{\ell}(x) .$$

Die Legendre-Polynome kennen Sie vielleicht noch aus der Elektrodynamik. Sie können explizit durch

$$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} \frac{\mathrm{d}^{\ell}}{\mathrm{d}x^{\ell}} (x^2 - 1)^{\ell}$$

berechnet werden. Zum Beipsiel ist $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$.

- [H1] Unser Lieblingskind, der harmonische Oszillator: Erinnern Sie sich an die algebraische Behandlung des harmonischen Oszillators mit einem Paar von Erzeugungs- und Vernichtungsoperatoren a^+ und a. Die Vertauschungsrelationen sind wiedereinmal $[a, a^+] = 1$, $[a^+, a^+] = [a, a] = 0$.
 - (1) Die kohärenten Zustände $|\chi_{\alpha}\rangle$ sind definiert als Eigenzustände zum Vernichtungsoperator a, d.h. $a|\chi_{\alpha}\rangle = \alpha|\chi_{\alpha}\rangle$. Ihre Entwicklung nach den Eingenzuständen $|\phi_n\rangle$ des harmonischen Oszillators hat die Form

$$|\chi_{\alpha}\rangle = C \sum_{n=0}^{\infty} f_n(\alpha) |\phi_n\rangle.$$

Bestimmen Sie die Entwicklungskoeffizienten $f_n(\alpha)$ und den Normierungsfaktor C. Überprüfen Sie, ob die kohärenten Zustände $|\chi_{\alpha}\rangle$ und $|\chi_{\beta}\rangle$ für $\alpha \neq \beta$ orthogonal sind, indem Sie $|\langle \chi_{\beta}|\chi_{\alpha}\rangle|^2$ berechnen. Hinweis: Die Reihe läßt sich schön zusammenfassen.

(2) Zeigen Sie, daß die Zeitentwicklung des kohärenten Zustandes gegeben ist durch

$$|\chi_{\alpha}(t)\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} e^{-i\omega nt} |\phi_n\rangle.$$

Hinweis: Der Hamiltonioperator ist $H = \hbar \omega a^{\dagger} a$ bis auf die hier vernachlässigte irrelevante Grundzustandsenergie.

(3) Berechnen Sie die zeitabhängigen Erwartungswerte des Ortes und des Impulses für den Zustand $|\chi_{\alpha}(t)\rangle$. Überprüfen Sie das Ehrenfestsche Theorem für den Impulserwartungswert. Welche physikalsche Bedeutung hat der Parameter α ? Hinweis: Das Ehrenfestsche Theorem wurde in der Vorlesung besprochen. Es lautet

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \chi_{\alpha}(t)|P\,\chi_{\alpha}(t)\rangle = -\left\langle \chi_{\alpha}(t)\left|\frac{\mathrm{d}}{\mathrm{d}x}V(X)\,\chi_{\alpha}(t)\right\rangle\right\rangle$$

für einen Hamiltonoperator der Form $H = \frac{P^2}{2m} + V(X)$.

- (4) Berechnen Sie das Unschärfeprodukt $(\Delta X)(\Delta P)$. Hinweis: Wenn Sie richtig gerechnet haben, sollten Sie das vielleicht überraschende Ergebnis erhalten, daß das Unschärfeprodukt zeitunabhängig ist.
- (5) Betrachten Sie den *ausgelenkten* Grundzustand des harmonischen Oszillators, der in Ortsraumdarstellung gegeben ist als

$$\langle x|\phi_0(L)\rangle = \frac{1}{\sqrt{x_0\sqrt{\pi}}} e^{-\frac{1}{2}\left(\frac{x-L}{x_0}\right)^2}.$$

Geben Sie seine Entwicklung in der Basis $|\phi_n\rangle$ an und vergleichen Sie dies mit der oben gefundenen Entwicklung des kohärenten Zustandes $|\chi_\alpha\rangle$. Hinweise: Der Zustand $|\phi_0(L)\rangle$ ist offensichtlich der um L translatierte Zustand $|\phi_0\rangle$, d.h. $|\phi_0(L)\rangle = \mathrm{e}^{-\frac{\mathrm{i}}{\hbar}LP}|\phi_0\rangle$. Drücken Sie P durch a^+ und a aus und verwenden Sie die Baker-Campell-Hausdorff-Formel

$$e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]},$$

gültig für beliebige Operatoren A, B, deren Kommutator eine Zahl (mal der Identität) ist. (10 P.)