Name: \qquad _, \qquad *** Important: Fill in and submit with your exam!!!

- 1 Gauge transformations. An electromagnetic field is described by the vector potential \boldsymbol{A} and the electrical potential Φ. A particle of mass m and charge q moves in this field. Then, in this case, the Hamiltonian reads

$$
H=\frac{1}{2 m}\left(\boldsymbol{p}-\frac{q}{c} \boldsymbol{A}\right)^{2}+q \Phi .
$$

(1) How would H read, if the particle had spin $\frac{1}{2}$?
(2) A homogenous, time-independent magnetic field $\boldsymbol{B}=(0,0, B)^{t}$ allows the choice

$$
\boldsymbol{A}=\frac{1}{2} \boldsymbol{B} \times \boldsymbol{x} .
$$

However, one might also choose $\boldsymbol{A}^{\prime}=\left(-B x_{2}, 0,0\right)^{t}$. Why?
(3) Show, how the wave functions of the Schrödinger equation with the choice \boldsymbol{A}^{\prime} have to be transformed such that they become equivalent to the wave functions for the choice \boldsymbol{A}.

- 2 Spin orbit coupling. In an atom, the coupling between the spin \boldsymbol{S} of an electron and its angular momentum \boldsymbol{L} is given by the operator $H_{L S}=\xi \boldsymbol{L} \cdot \boldsymbol{S}$.
(1) Which values can the total angular momentum \boldsymbol{J} assume?
(2) Which eigen values has $H_{L S}$?
(3) Assume now $\ell=1$, and find the normalized eigen states of $H_{L S}$ for this case.
[Hint: $J_{-}\left|j, m_{j} ; L, S\right\rangle=\sqrt{j(j+1)-m_{j}\left(m_{j}-1\right)}\left|j, m_{j}-1 ; L, S\right\rangle$. Note, using $J_{-}=$ $L_{-}+S_{-}$, you can write down the states in the orthonormal basis $|\ell, m\rangle\left|S, m_{S}\right\rangle$.]
- 3 Let a^{\dagger} and a form a pair of creation and annihilation operators with the standard commutator $\left[a, a^{\dagger}\right]=1$.
(1) Show that the operators

$$
L_{z}=\hbar\left(\ell-a^{\dagger} a\right), \quad L_{+}=\hbar \sqrt{2 \ell-a^{\dagger} a} a, \quad L_{-}=a^{\dagger} \hbar \sqrt{2 \ell-a^{\dagger} a}
$$

satisfy the angular momentum algebra, i.e. $\left[L_{z}, L_{ \pm}\right]= \pm \hbar L_{ \pm}$and $\left[L_{+}, L_{-}\right]=2 \hbar L_{z}$.
(2) Check that the relation $\boldsymbol{L}^{2}=\hbar^{2} \ell(\ell+1)$ is fulfilled.

$7: 10$	
$3: 10$	

- 4 Let the Hamiltonian of an anharmonic oscillator be given as

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}+\alpha \frac{m^{2} \omega^{2}}{\hbar} x^{4},
$$

where $\alpha>0$.
(1) Find the corrections to the energy in first order perturbation theory, i.e. the corrections to the eigen values $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$?
[Hint: $\left.a=\sqrt{\frac{\omega m}{2 \hbar}} x+\frac{\mathrm{i}}{\sqrt{2 \omega m \hbar}} p, \quad a^{\dagger}=\sqrt{\frac{\omega m}{2 \hbar}} x-\frac{\mathrm{i}}{\sqrt{2 \omega m \hbar}} p.\right]$

- 5 Commutators and Heisenberg picture. A much simplified model for electrons on a chain is the Hubbard Hamiltonian

$$
H=-t \sum_{i, \alpha=\uparrow, \downarrow}\left(c_{i+1, \alpha}^{\dagger} c_{i, \alpha}+c_{i, \alpha}^{\dagger} c_{i+1, \alpha}\right)+U \sum_{i} c_{i, \uparrow}^{\dagger} c_{i, \uparrow} c_{i, \downarrow}^{\dagger} c_{i, \downarrow} .
$$

Here, the fermionic creation and annihilation operators obey the standard anti-commutators
$\left\{c_{i, \alpha}, c_{j, \beta}^{\dagger}\right\}=\delta_{i, j} \delta_{\alpha, \beta}$.
(1) Calculate the commutator of $c_{j, \beta}^{\dagger}$ with H.
(2) Now, write down the commutator of $c_{j, \beta}$ with H, without long calculations.
(3) Give the equations of motion for the creation and annihilation operators in the Heisenberg picture.

- 6 Second quantization. Give, in second quantization for non-relativistic particles, the operators for the following observables:
(1) the particle density $\rho(x)$ and its Fourier transform $\hat{\rho}(q)=\sum_{x} \mathrm{e}^{-\mathrm{i} q x} \rho(x)$,
(2) the particle current density $\boldsymbol{j}(x)$ and its Fourier transform $\hat{\boldsymbol{j}}(q)=\sum_{x} \mathrm{e}^{-\mathrm{i} q x} \boldsymbol{j}(x)$,
(3) and the kinetic energy E.
- 7 A one-dimensional harmonic oscillator of charge q is assumed to be in its ground state at the

$$
V_{t}=-q F \mathrm{e}^{-\alpha t^{2}} x
$$

is switched on.
(1) Compute for $t \rightarrow+\infty$ to first order perturbation theory the transition probabilities $P_{|0\rangle \rightarrow|n\rangle}$ for $n>0$.

- 8 Relativistic quantum mechanics. A free particle with fixed momentum in z-direction, i.e. $\boldsymbol{p}=\left(0,0, p_{z}\right)^{t}$, satisfies the Dirac equation

$$
\mathrm{i} \hbar \frac{\partial}{\partial t} \psi(\boldsymbol{r}, t)=H_{\mathrm{Dirac}} \psi(\boldsymbol{r}, t), \quad H_{\mathrm{Dirac}}=c \boldsymbol{\alpha} \cdot \boldsymbol{p}+m c^{2} \beta
$$

with $\beta=\left(\begin{array}{cc}11 & 0 \\ 0 & -11\end{array}\right)$ and $\alpha^{k}=\left(\begin{array}{cc}0 & \sigma^{k} \\ \sigma^{k} & 0\end{array}\right)$.
(1) Make the ansatz $\psi(\boldsymbol{r}, t)=\psi(\boldsymbol{r}) \exp (-\mathrm{i} E t / \hbar), \psi(\boldsymbol{r})=\exp \left(\mathrm{i} p_{z} z / \hbar\right) u$, in order to obtain a four-dimensional homogenous system of equations for fixed momentum in z-direction.
(2) Which values of E allow the existence of non-trivial solutions?
(3) How do then the 4 -spinors u look like?

$4: 10$	
$3: 10$	
$3: 10$	

[Hint: It is not necessary to normalize the solutions.]

$4: 10$	
$4: 10$	
$2: 10$	

\qquad

Abstract

time $t_{a}=-\infty$. At this time, a homogenous time-dependent electric field

