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GROUPS

When a physicist describes some aspects of Nature by a theory, she will use two concepts: First of all, there is a set
of configurations of the physical system. The possible configurations can be given in various ways, e.g. as tupels
of quantum numbers in quantum mechanics, or as coordinatas and velocities, or as coordinates in phase space,
respectively, in classical mechanics. Secondly, there is the dynamics of the system, which again can eb encoded in
various way. Often, there is a Lagrangian or Hamiltonian which together with the principle of the least action will
generate the equations of motion from which the time evolution of our physical system can be infered.

In gerenal, a symmetry of such a physical system is a map of one configuration to another such that the
dynamics of the system is not changed. What this precisely means, depends on the system. However, the general
statememt immediately implies that the set of symmetries of a physical system forms a group in a very natural
manner. We will use the notation|ψ〉 to denote a given configuration of a physical system, although we do not
imply that we are dealing with quantum mechanics. Thus,|ψ〉 could, for instance, mean{q1, . . . , qN , q̇1, . . . q̇N},
i.e. a set of generalised coordinates and velocities.

Group Axioms. If I can map the configuration of a system to another without changing the dynamics, I can do the same
thing again. Let us denote such a symmetry map byg : |ψ〉 7→ |ψ′〉. Let us denote the set of all the symmetries by
G. Finally, applying one symmetry operation after another is called composition. Then we have:

[G1] ∀ g, g′ ∈ G : g′′ = g′ ◦ g ∈ G.

If we repeat this procedure once more, we may ask ourselves whether it matters in which order the composition
is done. Since, according tou our definition of a symmetry transformation, the system is always in a definite state,
the order should not matter. This is calledassocciativity, and reads:

[G2] ∀ g, g′, g′′ ∈ G : (g′′ ◦ g′) ◦ g = g′′ ◦ (g′ ◦ g).
Of course, there exists always the symmetry transformation of doing nothing at all, i.e. a mape : |ψ〉 7→ |ψ〉 for all
configurations. This trivial symmetry operation is called theidentitiy, and it satisfies:

[G3] ∃ e ∈ G : ∀ g ∈ G : g ◦ e = e ◦ g = e.

Finally, when we can do a symmetry operation, we also can undo it. Thus, we expect that there exists aninverse
operationg−1 to each operationg, i.e.

[G4] ∀g ∈ G : ∃ g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = g.

As one sees, symmetry operations naturally satisfy the four axioms which define the algebraic structure of agroup.
Note that we have said nothing about the specific nature of the symmetry operations so far.

One Parameter Groups. Many symmetry transformations can be described with the help of parameters, and very often,
these parameters are continuous variables. Examples are the angles of rotations or the shifts of translations. Thus,
our symmetry operationsg depend on some set of parametersu, i.e. g = g(u), u ∈ M. The parameters form
a manifoldM, often called thegroup manifold. The group composition is then encoded in some complicated
functionc of the parameters,g(u′) ◦ g(u) = g(c(u′, u)).

Since most descriptions of the dynamics of a system involve (partial) differential equations, we very often
encounter the situation where the group elementsg depend in a differentiable way on the parameters. ThenM
forms a differentiable manifold, and the composition functionc(u′, u) is differentiable, too. Groups with this
property are calledLie groups. There are also discrete symmetries such as parity, but these lectures will mostly be
concerned with the continuous differentiable symmetries.

The group manifoldM may have a high dimension, but we may restrict ourselves to one-dimensional
submanifolds parametrized by a single real variables. It is customary to putg(u = 0) = e. Let us consider one-
parameter submanifolds which run through the pointu = 0. The implicit function theorem then implies that we
always can choose the parametrization in such a way thatg(s′) ◦ g(s) = g(s′ + s) in some small neighborhood
s ∈ U0 = (−ε, ε) around zero. Of course,g(s = 0) = g(u = 0) = e. A consequence of this parametrization is
that these one-parameter subgroups are Abelian, i.e.g(s′) ◦ g(s) = g(s) ◦ g(s′) commutes for alls, s′ in the open
neighborhoodU0.

The advantage of the one-parameter subgroups is that they allow us to define an infinitesimal transformation
X. Such an infinitesimal transformation is a linearized version of the group elements very close to the identity. The
infinitesimal transformationX is often calledgeneratorof the one-parameter subgroup, and it is defined by

X =
d
ds
g(s)

∣∣∣∣
s=0

∈ TM0 .
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It constitutes an element of the tangent space to the group manifold at the point zero. The full groupG, or at
least the component of it connected to the identity, can be recovered from the set of all possible one-parameter
subgroups which run through the identity element. In fact, it will turn out that almost all information aboutG can
be recovered from the infinitesimal generators of the one-parameter subgroups.

Noether Theorem. As an example, how groups enter physics when symemtries are around, we consider the Noether
theorem which states that to every continuous symmetry there exists a conserved quantity in the physical system
restricting the dynamics of it. To keep things simple, we consider a system of only one generalized coordinate
q with LagrangianL(q, q̇). First, we define what we exactly mean by the statement that a symmetry operation
must leave the dynamics of the system invariant. The principle of the least action, i.e. thatS =

∫
dt L(t) must be

extremal, implies the equations of motion
d
dt
∂L

∂q̇
− ∂L

∂q
= 0 . (∗)

Now let us suppose that we have a one-parameter family of symmetry maps, i.e. for any real numbers in some
small intervall around0, s ∈ (−ε, ε), we have mapsgs : q 7→ q′ = gs(q), and induced maps̃gs : q̇ 7→ q̇′ =
g̃s(q̇) = ∂gs(q)

∂q q̇. The LagrangianL is theninvariant under the transformations given by(gs, g̃s), if for any fixeds
we can find a functionFs(q, q̇, t) such that

L(gs(q), g̃s(q̇)) = L(q, q̇) +
d
dt
Fs . (∗∗)

Note that invariance holds only upto a total time derivative. Such terms are allowed since they do not change the
equations of motions due to the fixed boundary conditions. Such total time derivatives give rise to so-calledsurface
termsin the action integral. They play an important role in several applications, e.g. supersymmetry, where they
cannot be neglected.

The invariance property(∗∗) of the Lagrangian implies aconservation law. To see this, we consider a
trajectoryq parametrized by a mapφ in time,φ : t 7→ q = φ(t). Such a map is called apath. Obviously, we can
concatenate the path map with the symmetry map,φs = gs ◦ φ : t 7→ q = gs(φ(t)), to obtain a whole family of
paths, one path for each value of the parameters. The invariance property(∗∗) now implies that the action integral
does not depend on the particular memberφs of this family, i.e. it is independet of the parameters. If the pathφ
solves the equations of motion(∗), so doesφs for each value ofs.

This can be recast in a more mathematical form by putting the variablet, which parametrizes a single path,
and the parameters, which labels different paths, on equal footing. We simply defineΦ(s, t) = gs ◦φ(t). Plugging
this into(∗∗), we obtain

L(φ(t), ∂tφ(t)) = L(Φ(0, t), ∂tΦ(0, t)) = L(Φ(s, t), ∂tΦ(s, t)− d
dt
Fs =⇒

0 =
∂

∂s

[
L(Φ, ∂tΦ)− d

dt
Fs

]
=

∂L

∂q

∂Φ
∂s

+
∂L

∂q̇

∂2Φ
∂s∂t

− d
dt
∂Fs
∂s

=
(

d
dt
∂L

∂q̇

)
∂Φ
∂s

+
∂L

∂q̇

∂2Φ
∂s∂t

− d
dt
∂Fs
∂s

.

In the last step, we have used the equations of motion. The last expression is a total time derivative. Since it
vanishes, the quantity under this total time derivative is conserved in time. This quantitiy is called theNoether
charge

Q =
∂L

∂q̇

∂Φ
∂s
− ∂Fs

∂s
.

Note thatQ is only conserved for solutions of the equations of motion! The Noether theorem shows that there
exists to any differentiable famliy of symmetry transformations a conserved charge. For example, symmetry under
translations implies conservation of momentum, symmetry under rotations conservation of angular momentum.
Although it applies to any continuous differentiable group of symmetries, its proof only involves the existence of
a locally defined one-paramter (sub)group of infinitesimal transformations.

Algebra. So far, we considered the Lagrangian approach to classical mechanics. There is an alternative theoretical
approach, the Hamilton formalism. In this approach, the algebraic structure of infinitesimal symmetries becomes
apparent. To keep things again simple, we consider a HamiltonianH(q, p) of just one mass point, i.e. of just one
coordinate(q, p) in phase space. We note in passing that for a mechanical system which can be treated in both
formalisms, the relation between the two approaches is given by the Legendre transformationH(q, p) = pq̇ − L,
whereq̇ is implicitly defined viap = ∂L

∂q̇ .
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The equations of motion in the Hamilton formalism are given by

ṗ =
dp
dt

= −∂H
∂q

, q̇ =
dq
dt

= −∂H
∂p

.

In the Hamilont formalism, one considers differentiable functions on phase space,g = C∞(Mn,n), whereMn,n

is a symplectic manifold. For two such functions,f(q, p) andg(q, p), one defines thePoisson bracket

{f, g} =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
.

The Poisson bracket belongs to the class of so-calledLie brackets, which are characterized by the following three
properties: First, it is bilinear, which says that the bracket is essentially a linear mapV ×V 7→ V for a vector space
V , i.e.

[A1] ∀ f, g, h ∈ g , ∀ µ, λ ∈ R : {λf + µg, h} = λ{f, h}+ µ{g, h} and
{f, λg + µh} = λ{f, g}+ µ{f, h}.

The next property is crucial. As we will see later, it corresponds in a certain sense to the axiom of the existence of
the inverse element for groups. The bracket isantisymmetric, i.e.

[A2] ∀ f, g ∈ g : {f, g} = −{g, f}.
Finally, there is a property, which will correspond to the law of associativity for groups. The bracket has to satisfy
a certain relation, called theJacobi identity, which reads

[A3] ∀ f, g, h ∈ g : {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Any vector space which admits the definition of a bracket with the properties[A1] to [A3] is called analgebra.
If there is the additional property of differentiablility, such an algebra is called aLie algebra. There is a precise
relationship between Lie algebras and Lie groups which we will encounter later.

The interesting point about the existence of such a Lie bracket on the space of functions on phase space is
that the time evolution of an arbitrary functionf(q(t), p(t)) defined on a trajectory(q(t), p(t) in phase space is
simply given by the equation of motion

d
dt
f(q(t), p(t)) = {H, f}

if H does not explicitly depend ont. If f is a conserved quantity, it obviously satisfies{H, f} = 0. One says that
f Poisson-commutes wohtH, or thatf is in involution withH. The Jacobi identity now ensures that iff andg are
conserved, so is{f, g}. Thus, the conserved quantities form a closed sub-algebra. This is a further hint that in order
to learn something about conserved quantities and their relation to symmetries, one should first learn something
about the structure of Lie algebras.

Quantum mechanics can be seen in the same light by performing canonical quantization in the Heisenberg
picture. The phase space is replaced by a Hilbert spaceH, the functions on the phase space by self-adjoint operators
acting onH representing the observables of the system. The quantization prescription is than

{·, ·} −→ i
~

[·, ·] ,

such that we obtain, for example,{p, q} −→ i
~

[p, q] = 1. The appearance of~ is necessary for dimensional reasons,
while the factori is needed, since the Poissone bracket of two real functions is again real, but the commutator of
two self-adjoint operators is anti-self-adjoint. One of the deep difficulties in quantum mechanics stems from the
fact that typically we can define the self-adjoint operators not on the whole of Hilbert space, but only on a dense
subspace of it. Thus, the product of two operators might not be defined at all, such that we cannot represent the
commutator in its naive way,[A,B] = AB−BA. However, if the commutator is defined, it satisfies[A1] to [A3] .
Note that in the Heisenberg picture, states|ψ〉 do not change in time, while the operators have a time evolution
defined by

d
dt
A(t) =

i
~

[H,A] .

Conserved observables obviously have to commute withH, and they again form a closed sub-algebra. With the
help ofA(H)(t) = exp(iHt/~)A(S) exp(−iHt/~), we can translate our statements to the Schrödinger picture.

The power of conserved quantities in quantum mechanics is that the induceselection rules, encoded in
Wigner-Eckart theorems, as the reader might already know. Let us suppose that a self-adjoint operatorA is con-
served, i.e.[H,A] = 0. Then we can defined an operator

UA(t) = eitA = 1l + itA+
1
2!

(itA)2 + . . .
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for realt in (at least) a small neighborhood aroundt = 0. These operators are unitary and satisfy

UA(t′)UA(t) = UA(t′ + t) ,

i.e. the operators form a one-parameter group! The symmetry groupG is then generated by all operatorsUA(t) for
all A which commute withH, thus

G =
〈
UA(t) : A self-adjoint, [H,A] = 0

〉
.

EXERCISES

In the first seminar meeting, we will discuss – among others – the following small exercises. If the reader whishes,
she might try these for herself at home. The author believes that the exercises not marked with a star are not hard
to solve. The last three exercises deal with finite groups. This will be our main discussion topic for our seminar
meeting. If you don’t know what to do with your time, try them. Some of the words used in these exercises might
not be known to you, but they will be explained in the seminar, in case you are so patient to wait until then to find
out.

Selection rules.What can you say about matrix elements〈n′, `′,m′|H|n, `,m〉 if angular momentum is conserved, i.e.
[H,Lz] = [H,L2] = 0 ?

Noether theorem. Use Noether’s theorem to calculate the conserved quantity associated to a rotation in a three dimen-
sional spaceR3 around the axis given by the vectora.
Hint: In this case we havedgsds (x) = a× x, where× denotes the cross product.

Poisson bracket.Check the three characteristic properties[A1] to [A3] of the Poisson bracket

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
of smooth functionsf, g on the phase space forn mass points. Deduce the relationddtf = {H, f} between time
derivatives and the Poisson brackets withH. Show that, iff andg Poisson-commute withH, so does{f, g}.

Symplectic manifolds∗. Consider an alternative definition of a bracket, given by

{{f, g}} =
n∑

i,j=1

(
Ωij

∂f

∂qi

∂g

∂pj
− ∂g

∂qi

∂f

∂pj

)
.

Which property must the matrixΩ possess in order that this bracket satisfies the Jacobi identity. Can it depend on
p andq ?

Translation in quantum mechanis. Check that a finite translation in one dimension can be represented by an operator
of the formexp(a d

dx ).
Hint: Expand in a series.

Unitary operators. Verify that the operatorsUA(t) defined above are unitary, i.e. obey(UA)† = (UA)−1, and that they
indeed form a unitary one-paramter group under the multiplication law. Show that unitary operators preserve the
inner product of Hilbert space vectors,〈UAψ′|UAψ〉 = 〈ψ′|ψ〉.

Small finite groups. Find the multiplication table for a group with three elements and prove that its unique. Find all
essentially different possible multiplication tables for groups with four elements, i.e. tables which cannot be related
by renaming elements.

Equivalent representations. Suppose thatρ andρ′ are equivalent irreducible representations of a finite groupG, such
that there is a matrixS with ρ′(g) = Sρ(g)S−1 for all g ∈ G. What can you say about a matrixA that satisfies
Aρ(g) = ρ′(g)A for all g ∈ G?

The tetrahedron∗. Find the group of all the discrete rotations which leave a regular tetrahedron invariant by labeling
the four vertices and considering the rotations as permutations on the four indices. This defines a four-dimensional
representation of a group. Find the conjugacy classes and the characters of the irreducible representations of this
group.
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