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BIG ‘Ad’ AND LITTLE ‘ad’

The representation theory of Lie groupsamounts essentailly in finding and studying Lie group homomorphisms

p: G — H,whereH C GL(V) is amatrix subgroup of the general linear group to a vector sgadde problem

is that Lie groups are also (complicated) manifolds, such ghatt only has to respect the group multiplication

law, but also the differentiable structure of the manifold. The first step to the solution of this problem is to reduce
everything to solely local information about the Lie group in a small neighborhood of the identity element. This
information is encoded in the Lie algebra, i.e. the tangent spaGeof the Lie group at the identity element. The
(complicated) topology is then simply “forgotten”, and everything is then done in vector spaces which are much
easier to handle. Of course, it is by no means clear that almost everything one wants to know about a Lie group
can be expressed in local information. The following principles, however, ensure precisely that.

Principle (I). LetG andH be two Lie groups(z connected. Amap : G — H is uniquely determined by its differential
dp. : T.G — T, H at the point corresponding to the identity element.

Principle (I). Let G andH be two Lie groups~, connected and simply connected. A linear miapr — 7.H is the
differential of a group homomorphism: G — H if and only if it respects the Lie bracket, i.ép.([X,Y]) =
[dpe(X),dpe(Y)] forall X, Y € T.G.

These two principles can be explicitly realised by introducing a certain map, namedgjthiet representation

of the group on its own tangent space. This representation has per definitionem the dimengioi devadjoint
representation is the analog of the regular representation for finite groups. Of course, we cannot represent the group
on itself, since the group is not a vector space.

Ad. The group multiplication from lefin, : G — G, my(h) = g o h, is not well suited to be reduced to local
information, because it has in general no fixpoint. In fact, group multiplication with a generic elgmaght
lead us far away from the poiit However, group conjugatiosy, : G — G, which maps each group element
hto g o h o g™t is much better. It will in general map a poihtto a point near. Its differential Adg) =
(dvog)e : T.G — T.G should already contain some information about the structure of the group. It is important
to understand that Ag) defines for eacly € G a map7.G — T.G of the tangent space onto itself. Therefore,
Ad: G — Aut(T.G) is per constructionem a representation of the grGupn the vector spac&.G. The reader
should check that this is indeed true, i.e. thai{ fd\d(2) =Ad(g o h). The most important properties of Ad are
shown in the two following diagrams which commute whengvers — H is a group homomorphism:

¢ % H ¢ Y% rH
Ad(9)=( ).
v | = ado) | | Adtoion -
G 2 H e Y 1H

The second diagram reads as a formula as the conditiohd(g) (X)) = Ad(p(g))(dp(X)) for all X, which are
elements of the tangent space.

ad. The condition given above has one nasty drawback, namely that the stélpappears at one place explicitly. We
can avoid this by considering the differential of Ad; §§G — End(7.G). It is crucial to understand that @& )
defines foreaclX € T.G amapl.G — T.G of the tangent space onto itself, i.e (&0 (Y") is a linear map ad¥)
of tangent vectory’, and yields again a tangent vectoripG. Please note, however, that(@dmight only be an
endomorphisms, in contrast to Agl, i.e. it is not necessarily an automorphism. Considering ad and Ad (in some
representation) as matrices, this means th@Xadnay have determinant zero, which cannot be the case fay)Ad
since this would contradict the group axioms. Now&d(Y) : T.G x T.G — T.G obviously is a bilinear map
which motivates to introduce some bracket notation for it. The reader should check the anti-symmetry property!
We define theLie bracketas[X,Y] = ad(X)(Y). A Lie group homomorphism : G — H is characterised by
the property that its differential respects the Lie bracket. This means that the diagram

e Y 1h
ad(X) l l ad(dp(X))
(df’)e

7.6 — T.H

commutes. Expressed in formulee, this amounts to the condifipfad(X)(Y)) = ad(dpe(X))(dp.(Y)), or
equivalently in the notaion with the Lie brackép. ([X,Y]) = [dp.(X),dp.(Y)] forall X, Y € T.G.



In order to understand these rather abstract definitions of ‘Ad’ and ‘ad’, it helps a lot tgyvie® and X € T.G

as matrices from Ayt”) or EndV'), respectively, for an arbitrarily chosén. This is what we have done in the

lecture. For instance, one can ggit= GL,R. Then we would have Ed&k™) = M, R, the set ofn x n matrices

with real entries. The operations ‘Ad’ and ‘ad’ can then be given explicitly. Chose an arbitrarily parametrized path

v : I — G in the manifoldG with the properties/(0) = e und+/(0) = X for any fixed tangent vectoX € T.G.

Here and in the following] is some finite interval. Without loss of generality, one can always asgumé-1, 1]

Then we have Ath(¢))(Y) = v(t) oY o~(t)~! and the Lie bracket indeed takes the form of a commutator we all

know:

_d

S dt

Lie algebra. A Lie algebrag is a vector space together with a bilinear skew-symmetric map: g x g — g, which
satisfies the Jacobi identity. This definition implies implicitly a statement with far reaching consequences, which
we can extract from the operation ‘ad’. A vector space together with a bilinear operation is a tangent space at
the identity element of a Lie group if and only if this bilinear operation is skew-symmetric and fulfills the Jacobi
identity. Our definiton of ad does start from a given Lie gra@epand therefore yields per constructionem a skew-
symmetric Lie bracket,X, Y] = —[Y, X], which automatically satisfies the Jacobi identity, since it is realised as
commutation in every representation. However, the converse is also true. If we have a Lie gJdbbrawe can
(re)construct from its Lie bracket a group multiplication law and thus a Lie group.

[X, Y] = ad(X)(Y) (AdOVE)Y )]z =X Y =Y Y.

A representation of a Lie algebgaon a vector spac®” is simply a map between Lie algebras g —
gl(V) = End(V), i.e. a map which respects the Lie bracket such that we have foralV" an operation ofj on
V given by[X,Y](v) = X(Y(v)) — Y(X (v)).

Lie group versus Lie algebra. Let us summarize what we got so far: The tangent spaaiethe identity element of a
Lie groupG is equipped in a natural way with the structure of a Lie algebra. Furthermaregiifd H are two Lie
groups withG conencted and simply connected, then the map& — H are in one-to-one correspondence to
maps between associated Lie algebras by associating tpeheMdifferential(dp). : g — b.

THE EXPONENTIAL MAP

We (hopefully) have now a feeling, how we can reduce a Lie group to local information which is encoded in its Lie
algebra. Now, we would like to see how we can get back from the Lie algebra to the group. Indeed, it is possible to
reconstruct (almost all of) the group structure. To do so, we consider a fixed given tangent¥eetpr= 7.G.

Further, leCx = {y: I — G : v(0) = e,7/(0) = X} be the set of all parametrized pathinwhich start at the
identity element and leading there in the directionXaf

Vector fields. Givem a manifold)/, we can define the ring of the differentiable functiafi$®(1/). Each function
f € C*°(M) assigns to each poipte M a (real) value, i.e. a point = f(p) € R. Now, avector fieldv assigns
for a givenf to each poinp € M the tangent vector of at the point, i.e. (v(f))(p) = vp(f) € T, M.

An elementary but fundamental theorem in differential geometry tells us that vector«ieldd/ can be
integrated to functiong : I — M with boundary conditiong)(0) = p for somep € M, and¢’(t) = vyy).
The functiong is uniquely characterised by the choice of boundary (or initial) conditions. We remark here that the
existence ofp is ensured by the fact that for each path¢ € I — ~(¢) € M with I an open set oR containing
zero, and for each function: ¢t € I — R, one can find a functiogf € C>° (M) such thatf (v(t)) = g(¢).

Left-translations. One of the implications that the manifold carries a group structure is that there are families of diffe-
rentiable mappings of the Lie group manifold into itself, whichtaamsitively. This means that for any two group
elements; andg’, there is a member of the family which map$o ¢’. These mappins are given by the so-called
left-translationsm, : h — g o h, which are nothing else than the group multiplications withom left. Of course,
one could define right-translations in the same fashion. The translations which map a given group elergént
to a prescribed’ € G aremy.,-1. We note that the translations can in particular be used to map any pdaint of
to the unit element of the group multiplication, It is easy to see that left-translations transport the basis of any
tangent spacg, G to any other point of7 in an invertible way.

Left-invariant vector fields. The existence of the left-translations admits to construct very special global vector fields
with the property that they vanish nowhere 6h We can associate to each tangent vedfoe g exactly one
so-calledeft-invariant vector fieldX, such thatX, = X. First of all, X is a vector field that assigns to a function
f € C=(G) and for each element € G a tangent vectoX ,(f) € T,G. The fact that it is left-invariant means
that this assignment is compatible with the group multiplication from teft,: G — G. A vector field X with
this property is easy to find:

X,(9) = dm X(f) = X(fomy) = & Flgo(t)lg



where~ is an arbitrary element df x. In fact, we obviously then have
- d -
dmpXy(f) = dmpdm, X (f) = X(f omgomy) = a flhogoy(t)li—g = Xng(f)-

The left-invariant vector fieldd does nothing else than to transport the tangent veter 7,G in a way compa-

tible with the group multiplication lawn, to a tanget vector iff,G. Thinking of a basis iff. G, we see that we
get a moving frame which moves in accordance with the group multiplication law to a b&gj&/inThis means

that the vector bundle ovér where we assign to eagtthe tangent spacg, G is trivial. Such manifolds are called
parallelizable

Of course, left-invariant vector fields can be integrated as well, and our boundary conditions are now that
#(0) = eandq’(t) = XW). The left-invariance of the special vector fiekitogether with the uniqueness of the
integration curve has the consequence thathereever it is defined, is a group homomorphism,d(e.+ t) =
@(s) o &(t) for s,t € I. Let us write this down in the following way

Ryt () = 52 16(6) 0 60)lemo = & (65 +1)lco

since it is clear from the boundary conditions fothaty € T'x.

One-parameter subgroups. The existence of left-invariant vector fields to given tangent vectoss g gives us integral
curves, which simultaneously are group homomorphisms. These are thereforeocapdrameter subgroups
Due to the group structure, these one-parameter subgeuftg, which we only defined locally fot € I and
thus for a small neighborhood aroundare automatically well defined féare R. Another way to say this is the
statement that for eachi € g there exists exactly one path in the family, which is a group homomorphism.
This path is precisely the integral curve of the left-invariant vector figl&ince this works for alX € 7,G, the
set of all one-parameter subgroups will completely cover a neighborhood of the identity element. Since, by use of
the group law, any arbitrarily small neighborhood of the identity generates the full (connected component of the
identity element of the) grou@, we finally get the desired result that the information encoded in the Lie algbera
g suffices to reconstruct the group (to a large extent).

Exponential map. The integral curve satisfies the functional equatis + t) = ¢(s) o ¢(t). This is exactly the
functional equation of the exponential function. One therefore defines

G
ox (1) -

Since¢ is unique, we obviously have, x (t) = ¢x(At). The exponential map, restricted to lines through the
origin of T.G = g, exactly yields the one-parameter subgroups. More precisely, the exponential maprigthe
mapg — G, which sends the origin to the identity elemént» e, whose differential at the origin is the identity,
ie.

exp: g
exp(X)

Il

(dexp)o:Tog =g — T.G =g,

and whose restriction to lines through the origin yields the one-parameter subgroups. This map is natural in the
sense that for arbitrary Lie group mappingsG — H we have that the diagram

9@6

exp l l exp

G % H

commutes. This statement allows us to study the theory of representations of a Lie group by looking at the repre-
sentations of its Lie algebra!

Since(d exp)g in g is an isomorphism, the imaden(exp) D U must contain a neighborhood of the identity
elemente in G. If G is connected, thefy generates the whole grodpwhich puts Principle (I) on firm grounds.
Moreover, we get the following simple relation between ‘Ad’ and ‘ad’:(&th (X)) = exp(ad X)), which one
deduces with the help of the so-callBeker-Campbell-Hausdorff formel&hus, we also obtain principle (I1).

Baker-Campbell-Hausdorff. We can use the exponential map to assign to elements of the Lie algetements of
the corresponding Lie grou@. But how is the group multiplication law implemented, i.e. how do we find the
elementZ € g, such thaexp(X) o exp(Y) = exp(Z) is satisfied? One can do this explicitly, when (in a given



representation) one realizes the Lie group and its algebra by matrices. Then, the exponential map is nothing else
than )
exp(X) = Z EX )
n
which converges and is invertible with the inverse(—X). Obviously, we havéd exp), = 1. We immediately
obtain for the one-parameter subgroups

exp(AX) exp(puX) = ZZ 'm‘ DT s ZZ N'( >)\k,uNkXN = Z()\Jr,u)NXN = exp((A+p)X).

N k=0 N

But the whole group structure is already hidden in its Lie algebra. To see thi§, Yebe chosen from a sufficiently
small neighborhood of the origihe g. Furthermore, consider fgre G ¢ GL,,R the map

log(g) = = %(g —e)" € gl,R,

n

which is, of course, only valid for suchwhich lie in a sufficiently small neighborhood of the identity element.
But wherever this map is defined, it is obviously the inverse of the exponential map. With all this we are ready to
define theBaker-Campbell-Hausdorff product

X #Y =log(exp(X) oexp(Y)).
The crucial point is not the explicit form ok * Y, but the fact that the result depends only &nY and the
operations adX) and adqY’). The first few terms read as follows:
X*Y (X +Y) +3[X Y]+ 55 (X XY+ [V [V, X)) + .
= (X +Y)+ 1ad(X)(Y) + 35 (ad(ad(X))(Y) + ad(ad(Y))(X)) ...
= (1+i(adX —adY) + £ (ad’X +ad’Y) +...) (X +Y).

Note that there are in particular no terms suchXds but all terms can be collected in such a way that they can

be expressed solely in terms of the Lie algebra and their Lie brackets. This implies that we do not need matrix
multiplication (which we need to explicitly compute commutators) but only linearity and the Lie bracket. The

proof of such formulae is not easy, but Dynkin managed to find a closed form of the B-C-H product. This handout
closes with the uncommented display of an intergral representation of the B-C-H product,

1 o]
log(2) =) n
X+xY =X +/0 g(exp(adX) o exp(tadY))(Y)dt, g(z) = To1= 1— ; m(z —1)".
The key point is that agaiX andY themselves appear only linearly, all other terms involve only the commutator
operation (the Lie bracket). Furthermore, one sees that the expansion in a series makes sense, since the term with
the identity element just cancels,

n+1
X*Y:X-|-Y-|-/ dtz exp(adX)oexp(tadY)—e)n (Y).

A useful formula. The problem of computing exponentials of non-commuting objects is well-known from quantum
mechanics. In particular, one often has to transform a given obserxabjea unitary transformation, i.ed —
UAU'. Thus, as we now can appretiate a bit better, the unitary transformation will typically be given as the
exponential of the generator of the corresponding infinitesimal transformation, némely/, (X) = exp(iAX).
Thus, one needs an explicit expression dap(iAX)A exp(—iAX). Of course, X is a Hermitean operator and
A a real parameter for the one-parameter subgroup, which is generat€d Mgte that we now switched back
to the convention most often used in physics, where the generatros of transformations are chosen Hermitean. In
mathematics, one typically uses anti-Hermitean generators, but real instead of purley imaginary coefficients. With
the B-C-H product one finds

exp(iAX)Aexp(—iAX) = A+IAX, A+ (12!)2[X, (XAl +... + (iil)n[X, (X, [X,...[X, A]]).. ]+
_ <Z (12) d”X) (4)
n=0 ’
= exp(iradX)A,

which also demonstrates once more, how useful the notatioki ge) = ad X (+) is, even if we mean nothing else
than the commutatdtX,, - |.



