Handout IV for the course GOUP THEORY IN PHYSICS Michael Flohr
Fun withsu(2) 30. November 2004

IRREPS OFsu(2)

In the last lecture, we constructed all finite-dimensional irreducible representatien@pfin contrast to the way

one does this in quantum mechanics, we did not make use of the op&fasince this is not an element of the Lie
algebra. The only assumption we made is that the representation is finite-dimensional. In fact, if we are interested
in unitary representaitons, one can show that these mus be finite dimensional for compact Lie groups and therefore
also for their Lie algberas.

Highest weight construction. The Lie algebrasu(2) is three-dimensional and defined via the commutation relations
(5, Ji] = iejlil. In fact, this is the smallest non-trivial Lie algebra. Since there are no two generators which com-
mute with each other, we can only diagonalize one generator at a time. Given a finite-dimensional repregentation
on a vector spac¥ with dimensior¢, we choose to diagonalize the linear operatofs). Sincep(Js) is Hermi-
tean, the eigenvalues are real. Sidé& V' < co, we can choose the eigenstate(fs) as basis fol/ such that
there must be a statg, =) whoseJs-eigenvalue is maximah(Js)|j, z) = jlj, z) andp(J3)|5’, 2"y = j'|5’, 2'),

4" < jforall . Here,xz denotes all further labels which might be necessary to specify statésTihe trick is that
we start with a state with maximal eigenvalue which must exists, dinisfinite dimensional.

The next trick is to redefine the other generators. Choogifng= %(Jl +1iJs), the commutation relations

read[J*,J~] = J3 and[Js, J¥] = £J7. In this basis for the generators, the action/éf on |j/, z) is easy to

computep(Js)(p(J5)|5", 2)) = [p(J3), p(T)I5", 2)+p(TF)p(Js)15", ) = p(TF)p(J3)|j", 2) £p(TF)j', 2) =
(5" + 1) (p(JF)|5’, ). We see thaff * raise or lower the/; eigenvalue by plus or minus one, respectively.

The immediate consequence is thaf *)|j, =) = 0 sincej was by definition the maximal possible eigen-
value. This is whyj, ) is called a highest weight state apils highest weight. Other states can be constructed by
usingp(J7)|j, x) = N, .|j — 1, z). We have seen in the lecture that the normalizafign. = N; is independent
of z. Furthermore, we found thatJ")|j — 1,2) = N;|j,z) and thatV; = ;. Finally, state$;’, =) and|j’, y) are
orthogonal to each other far # y. We can repeat this and find statgs- 2, z), |5 — 3, z) and so on, in general
|j — k—1,z) with normalization constant¥; _, the latter turning out to b&/> , = 1(k+1)(2j — k). Renaming

)
k = 7 — m, we find the well known formula

Now = /GG —m+1).
We can use the fact th&t has to be finite dimensional once more. It means that we cannot lowgs thgenvalue
indefinitely. There must be a stafte— i, z) such thatp(J~)|j — h,z) = 0, or equivalently, there must be an
integerh such that the norm gf(J~)|j — h,z) = 0. Thus, we must hav&/;_; = %«/(2]' —h)(h+1) =0.

Sinceh > 0, the only solution ish = 2j which implies thatj = h/2 € Z, /2. We also observe that all this is
indepenent of such that the representation is irreducible only, if there is only one highest weight state and thus no
dependence on at all. Thus, all finite-dimensional irreps are classified by just one nughbeZ.; /2, the highest
weight. The dimension of the irrepis ¢ = 25 + 1.

Standard notation. In order to label in which irrep we are, we denote the statefg by) where now; is the highest
weight, andm the actual/; eigenvalue of the statg{?) (.J3)[j, m) = m|j, m). We also made the irrep explicit in
the notation for the linear operatgr?) (.J3). Of courseyn € {j,j —1,...,—j + 1, —j}. The matrix elements of
the linear operators representing t¢2) algebra are now easy to find. Sinee/ ) |j, 7 —k) = N,_xlj, j—k—1)
andp(J*)|j,j—k—1) = N;_x|5, 7 — k), we find for the matrix elementp ) (J,)) , = (j,m|p\9) (J,)|4, m)
the expressions

m’'m

<.j7 m/|p(J)(‘]3)|]7m> = mém/,m 5 <ja m/|p(J)(‘]:t)|ja m/> = \/(j +m + 1)(.7 + m)/2 577L/,'mi1 .
These results can easily be translated to the matrix element fand J,, sinceJ; = - (J* + J~) and

V2

Jo = %(JJr — J7). As examples, we give the matrices foe= 1/2,1 and3/2. The spinj = 1/2 irrep is geiven
by

1/0 1 1 1/0 —i 1 1/1 0 1
(1/2) I B (1/2) I B (1/2) B I
p (Jl) 2 <1 0) 2017 P (‘]2)_2 < i 0 ) _2027 P (']3)_2 (0 _1> —20'3.



Indeed, these matrices are the Pauli matrices satistying = d., + i€, 0. This is the defining representation,
sinceexp(ia - o) yields precisely al2 x 2 matrices which are unitary and have determinant one. Thejspin
irrep is given by the generators
1 1 1 —i 1

Oy =—11 1|, pWh)=—]|1i —i |, pW(J3) = 0
P (J1) V2 ) P (J2) 2 : P (J3) .

This is indeed equivalent to the adjoint representation. To see this, one has to find a similarity transfaPraatibn
that PT, P~ = p(V)(J,), where(T,),* = —¢,,° are the generators in the adjoint representafign= ad(J,).
The similarity transformation which does the trick is

/2 —i/2 0
P = 0 0 —1/v2
-1/2 —i/2 0

Finally, the spinj = 3/2 irrep reads

3/2 —/3/2i
(3/2) _ 3/2 2 (3/2) _ V/3/2i —2i
3/2 3/2i

andp®/?)(J3) = diag(3/2,1/2, —1/2,—3/2). We note that an automatic consequence of our construction is that
the states are orthonormal, i{g!, m’, 2’|, n, ) = §;/;0,'m027 Wherez denotes quantum numbers with respect
to other possible observables.

TENSORPRODUCTS

Classifying all irreps of a given Lie algebgas the first step to understand the representation theqyryTie next

step is to study how an arbitrary representation decomposes into irreps. The most common reducible representati-
ons one encounters in physics are tensor products of irreps. We will see some of what goes on with tensor products
in the well known example of angular momentum addition. The point is that a physical system might transform

in such a way under a symmetry that it carries quantum numbers for different irreps of the symmetry algebra. For
example, a particle with spinand angular momentuithcan be described with a Hilbert space whose states have
independenjuantum numbers with respect to the ire@) and the irrepp(®) of math fraksu(2). The states

can thus be denotes gsm) ® |s,ms) = |¢,m)|s, ms) where it is customary to omit the tensor product symbol.
Another common notation i€, m; s, m).

Transformation properties. To understand how the Lie algebra acts on a tensor product, we have to change notation
for this paragraph. We will denote the representations of the Lie group on vectoriggawiy by p¥ andp",
and in general group representationsb¥he representations of the corresponding alggltana denoted bylp"’,
dp" anddp, respectively. This makes explicit that the linear operatipia:* X,,) can be thought of as the linear
differentials of the linear operatofgg), g = exp(iu®X,).

The group acts in the following way on the vector splice W with stategv) ® |w):

P @) o) = 3 1)@ ) 0V (9)) (o)

v’ w’

(ZIW (pv(g))v/v> ® <Z jw') (PW(Q))w/w> :

This means nothing else than the statement that the factors of the tensor products states transform independently
under the group action. Now, it is very easy to find how the algebra acts, &inaets as derivation fgs. Thus,

we find
(1 +iudp SV (L)) ) @ fw) = Y ) @ ) ('] © ('] (1 +iutdp" ®W (1)) [o) @ w)
= @) (B + 10 (@) o)

Z [v") @ |w') (6,,/,,, + iu? (de(Ja))v,v) (5w/7w + ju® (de(Ja))w,w) )



To first order inu we thus get what we expect of a derivation:

(dpv®W(Ja))(U/w/)(mn) = (de(Ja))v’v 6“’/’“’ + 51’/*") (de(Ja))w’w
or simplydp¥V®W (J,) = dp¥(J,) ® Iy + 1y ® dp™V (J,). It is often quite cumbersome to keep track of the
different representations and the explicit notion of the tensor products. Thus, the reader will often find shorter
notations such as

Ja ([0)|w)) = (Ja|v)) |w) + [0} (Ja|w)) -

One of the easier things to work out with tensor products are the eigenvalues of the generators which can be
diagonalized. We chose to diagonalize/ftpand the eigenvalues of this generator simply add up:

Js (|j1,m1)]52, m2)) = (m1 +m2) (|71, m1)[j2, m2)) .

The specific way how the Lie algebra acts on a tensor product is all one needs to decompose the tensor represen-
tation into irreps by applying the highest weight construction to the tensor states and use the derivation property
of the representation. That is exactly the procedure one goes through in quantum mechanics when decomposing,
for instance, the tensor product of & 1 and aj = 1/2 representation, starting with the (unique) highest weight
state|3/2,3/2) = |1,1)[1/2,1/2). This is left as an exercise.

Tensor operators. It might be helpful at this stage to repeat some stuff from quantum mechanics like tensor operators
and the Wigner-Eckart theorem. A tensor opera@d®) of rankr is simply an operator which transforms in the
spinr irreducible representation, i.e.

(1), 0571 = > 085 (1) (1)

m’'m

Note that we now go back to use the sympdbr a representation of the Lie algbera, instead @f Of course, a

tensor operator has components since otherwise it could not possibly transform according tosithemgisenta-

tion. A brief example might help, a particle in a spherically symmetric potential. The angular momentum is given
by L, = ¢,’ryp.. The operatord., form a representation of the Lie algelx&(2). Now, the position operator

r IS related to a rank one tensor operator (i.e. a tensor operator transforming in the spin one irrep), because it
transforms under the adjoint representation:

[p(Ja), 1) = eac‘j[rcpdmb] = —ieac‘ircébd = —iea“lrc =71.(T4)% =rcad(J,)5

Note however, that;, does not transform in the canonical way, since the representation matrices for the ad-
joint representation have not the standard form given above. If we have in general an ofgradach that
0(Ja), Op] = >, O (p(Ja)),, With p being equivalent to a spinirrep, then we can find a matri& such that
Sp(J)S~1 = p()(J,). We can then use this matrikto redefine the tensor operatd,) = 0,(S~1) . This
redefined operator now transforms precisely in the ig@p, i.e. [p(")(J,), O%)] = [Sp(J.)S~L, (OS™1),] =

Op (57,7 5,5 (p(Ja))erar (S71), ¢ = O (p)(J4))mrm. It is often not necessary to fingl explicitly. If we

find a linear combinations of the componefls that is an eigenstate o with eigenvalue”, then we can take

this as a component @(") and construct the other components by applyidg For the position operator, this is
easy. We know thdp(.J3), 3] = 0, thereforer; can be identified with the componerﬁll). We find the other two
components by simply computig® (J£), r{"] = r{] = F(ry £ir2)/V2.

Wigner-Eckart theorem. Tensor operators have the great advantage that their matrix elements are determined by the
su(2) symmetry upto a constant which is independent of the symmetry (usuallym this constant is determined by

the dynamics of the physical system under consideration). When a tensor opélﬁfaists on a statg, m), the

whole object transforms in the tensor representaiiéi(?). Let us denote the coefficients of a base change from

the basis{|r, k)|j,m) : k = —r,...,r, m = —j,...,j} tothe basif|J,M) : J = |r —j|,...t+j, M =

—J,...J} for the decompositior) ® (j) = @SJ;J'T_jl(J) by (J, M|r, k; j,m), theClebsh-Gordan coefficients

These coefficients are entirely determined by 4h€2) structure, and can be obtained by applying the highest
weight construction to both bases, using the derivation property of the tensor representation. In essence, they are

determined upto some overall normalization and signs by the two recursion relations

VGEFmM)G Em+ 1) G mas o, malim£1) = /(1 Fma+ 1)(G1 £ma) (1, ma F 1 ja, malj, m)
+ V(2 Fma + 1)(ja £ ma){j1, m1, j2, ma F 1]7,m),




subjecto to the conditiom; + ms = m + 1. Note that we have used here the inverse base change, just because
we like to make things irritating for the readey . Once we know these, the matrix elements of tensor operators
have the simple form

(L | O3, m, @) = S g (T, K+ mlr, k; §,m) (2|00 |4, ),

where(J, 2|0 |4, z) is called thereduced matrix elememif the tensor operator. It only depends on the irreps
involved, and any remaining dynamical degrees of freedom, denotedrharel z, but not on the components,

i.e. the magnetic quantum numbers. Thus it depends neither on the inner structure of the involved irrpes, nor the
particular states in them. This statement is known as the Wigner-Eckart theorem. It is valid for any Lie algebra,
as we will see in due course, but here we have repeated it in the form well known from the theory of angular
momentum and spin in quantum mechanics.

Of course, what we have just said equally applies to products of tensor operators. Such ;@é’a@i’éo)
simply transfrom in the tensor representatioh (') and can thus be decomposed into a sum of tensor operators
by again the highest weight procedure. Also, theeigenvalues again simply add up, i.e. we get nothing else
than[p"®()(J3), O (’),(;/O)] = (k+ k’)(’),(;)O,(;lo). More generally, the action of the generatdysof the Lie
algebrasu(2) on a product of tensor operators is given as for tensor products of vector spaces, such that,

P20 (1), 00087 = [p0 (1), 00108 + 0 [p(J,), 0]

oo (#70), + 00 (61 (),

ADDENDUM TO HANDOUT I

We have seen in handout Ill that the tangent space at any paiha Lie groupG carries the structure of a Lie
algebra. In particular, the tangent space at the identity elefigft,carries this structure. The abstract Lie algebra
associated to a Lie group is therefore given by the identificgtian’,. G. Thus, the real dimension gfis equal to
the dimensionl of the manifoldG. Equivalently,g can be identified with the space of left- or right-invariant vector
fields, and one may interchange the identifiactions freely.

Universal covering group. One important issue has to be clarified here. The Lie algebra carries almost all of the infor-
mation on the Lie group manifold. The only inforamtion about a finite-dimensional Lie growhich is lost when
the linearized and purelgcal information encoded in its Lie algebgds considered, are properties of topological
and entirely global nature. More precisely, the Lie algebra cannot contain any information that depends either on
the setr(G) of different connected components of the group manifold, or on the fundamental gro@p. In
particular, for any simple compact real Lie algelprahere is auniquecompact simple Lie groug, for which
the Lie algebra of invariant vector fields is isomorphiggtand such thaf? is connectedandsimply connected
This means thaf; has trivial groupsro(G) = 0 = 7,(G). Moreover, one can show that for any connected Lie
group G with the same Lie algebrg there is a surjectiver Lie group homomorphism: G — G such that
the kernel ofy is a subgroup of the center 6f. This subgroup is then isomorphic tq (G). The center of a
groupG is the subgroup consisting of all those eleménts G which commute with all the elemengse G, i.e.
C(G) ={h € G: hg = ghVg € G}. For this reasort is also called theniversal covering groupssociated
with the Lie algebray.



