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IRREPS OFsu(2)

In the last lecture, we constructed all finite-dimensional irreducible representations ofsu(2). In contrast to the way
one does this in quantum mechanics, we did not make use of the operatorJ2, since this is not an element of the Lie
algebra. The only assumption we made is that the representation is finite-dimensional. In fact, if we are interested
in unitary representaitons, one can show that these mus be finite dimensional for compact Lie groups and therefore
also for their Lie algberas.

Highest weight construction. The Lie algebrasu(2) is three-dimensional and defined via the commutation relations
[Jj , Jk] = iε l

jk Jl. In fact, this is the smallest non-trivial Lie algebra. Since there are no two generators which com-
mute with each other, we can only diagonalize one generator at a time. Given a finite-dimensional representationρ
on a vector spaceV with dimensioǹ , we choose to diagonalize the linear operatorρ(J3). Sinceρ(J3) is Hermi-
tean, the eigenvalues are real. Sincedim V < ∞, we can choose the eigenstates ofρ(J3) as basis forV such that
there must be a state|j, x〉 whoseJ3-eigenvalue is maximal,ρ(J3)|j, x〉 = j|j, x〉 andρ(J3)|j′, x′〉 = j′|j′, x′〉,
j′ ≤ j for all j′. Here,x denotes all further labels which might be necessary to specify states inV . The trick is that
we start with a state with maximal eigenvalue which must exists, sinceV is finite dimensional.

The next trick is to redefine the other generators. ChoosingJ± = 1√
2
(J1± iJ2), the commutation relations

read[J+, J−] = J3 and[J3, J
±] = ±J±. In this basis for the generators, the action ofJ± on |j′, x〉 is easy to

compute:ρ(J3)(ρ(J±)|j′, x〉) = [ρ(J3), ρ(J±)]|j′, x〉+ρ(J±)ρ(J3)|j′, x〉 = ρ(J±)ρ(J3)|j′, x〉±ρ(J±)|j′, x〉 =
(j′ ± 1)(ρ(J±)|j′, x〉). We see thatJ± raise or lower theJ3 eigenvalue by plus or minus one, respectively.

The immediate consequence is thatρ(J+)|j, x〉 = 0 sincej was by definition the maximal possible eigen-
value. This is why|j, x〉 is called a highest weight state andj its highest weight. Other states can be constructed by
usingρ(J−)|j, x〉 = Nj,x|j − 1, x〉. We have seen in the lecture that the normalizationNj,x ≡ Nj is independent
of x. Furthermore, we found thatρ(J+)|j− 1, x〉 = Nj |j, x〉 and thatN2

j = j. Finally, states|j′, x〉 and|j′, y〉 are
orthogonal to each other forx 6= y. We can repeat this and find states|j − 2, x〉, |j − 3, x〉 and so on, in general
|j−k−1, x〉 with normalization constantsNj−k, the latter turning out to beN2

j−k = 1
2 (k+1)(2j−k). Renaming

k = j −m, we find the well known formula

Nm =
1√
2

√
(j + m)(j −m + 1) .

We can use the fact thatV has to be finite dimensional once more. It means that we cannot lower theJ3 eigenvalue
indefinitely. There must be a state|j − h, x〉 such thatρ(J−)|j − h, x〉 = 0, or equivalently, there must be an
integerh such that the norm ofρ(J−)|j − h, x〉 = 0. Thus, we must haveNj−h = 1√

2

√
(2j − h)(h + 1) = 0.

Sinceh ≥ 0, the only solution ish = 2j which implies thatj = h/2 ∈ Z+/2. We also observe that all this is
indepenent ofx such that the representation is irreducible only, if there is only one highest weight state and thus no
dependence onx at all. Thus, all finite-dimensional irreps are classified by just one numberj ∈ Z+/2, the highest
weight. The dimension of the irrepj is ` = 2j + 1.

Standard notation. In order to label in which irrep we are, we denote the states by|j,m〉 where nowj is the highest
weight, andm the actualJ3 eigenvalue of the state,ρ(j)(J3)|j, m〉 = m|j, m〉. We also made the irrep explicit in
the notation for the linear operator,ρ(j)(J3). Of course,m ∈ {j, j − 1, . . . ,−j + 1,−j}. The matrix elements of
the linear operators representing thesu(2) algebra are now easy to find. Sinceρ(J−)|j, j−k〉 = Nj−k|j, j−k−1〉
andρ(J+)|j, j−k−1〉 = Nj−k|j, j−k〉, we find for the matrix elements

(
ρ(j)(Ja)

)
m′m

= 〈j, m′|ρ(j)(Ja)|j,m〉
the expressions

〈j, m′|ρ(j)(J3)|j,m〉 = m δm′,m , 〈j, m′|ρ(j)(J±)|j, m′〉 =
√

(j ±m + 1)(j ∓m)/2 δm′,m±1 .

These results can easily be translated to the matrix elements forJ1 and J2, sinceJ1 = 1√
2
(J+ + J−) and

J2 = i√
2
(J+ − J−). As examples, we give the matrices forj = 1/2, 1 and3/2. The spinj = 1/2 irrep is geiven

by

ρ(1/2)(J1) =
1
2

(
0 1
1 0

)
=

1
2
σ1 , ρ(1/2)(J2) =

1
2

(
0 −i
i 0

)
=

1
2
σ2 , ρ(1/2)(J3) =

1
2

(
1 0
0 −1

)
=

1
2
σ3 .
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Indeed, these matrices are the Pauli matrices satisfyingσaσb = δab + iε c
ab σc. This is the defining representation,

sinceexp(iα · σ) yields precisely all2× 2 matrices which are unitary and have determinant one. The spinj = 1
irrep is given by the generators

ρ(1)(J1) =
1√
2

 1
1 1

1

 , ρ(1)(J2) =
1√
2

 −i
i −i

i

 , ρ(1)(J3) =

 1
0

−1

 .

This is indeed equivalent to the adjoint representation. To see this, one has to find a similarity transformationP such
thatPTaP−1 = ρ(1)(Ja), where(Ta) c

b = −ε c
ab are the generators in the adjoint representation,Ta = ad(Ja).

The similarity transformation which does the trick is

P =

 1/2 −i/2 0
0 0 −1/

√
2

−1/2 −i/2 0

 .

Finally, the spinj = 3/2 irrep reads

ρ(3/2)(J1) =


√

3/2√
3/2 2

2
√

3/2√
3/2

 , ρ(3/2)(J2) =


−
√

3/2i√
3/2i −2i

2i −
√

3/2i√
3/2i

 ,

andρ(3/2)(J3) = diag(3/2, 1/2,−1/2,−3/2). We note that an automatic consequence of our construction is that
the states are orthonormal, i.e.〈j′,m′, x′|j, n, x〉 = δj′jδm′mδx′x wherex denotes quantum numbers with respect
to other possible observables.

TENSORPRODUCTS

Classifying all irreps of a given Lie algebrag is the first step to understand the representation theory ofg. The next
step is to study how an arbitrary representation decomposes into irreps. The most common reducible representati-
ons one encounters in physics are tensor products of irreps. We will see some of what goes on with tensor products
in the well known example of angular momentum addition. The point is that a physical system might transform
in such a way under a symmetry that it carries quantum numbers for different irreps of the symmetry algebra. For
example, a particle with spins and angular momentum̀can be described with a Hilbert space whose states have
independentquantum numbers with respect to the irrepρ(`) and the irrepρ(s) of mathfraksu(2). The states
can thus be denotes as|`,m〉 ⊗ |s,ms〉 ≡ |`,m〉|s,ms〉 where it is customary to omit the tensor product symbol.
Another common notation is|`,m; s,ms〉.

Transformation properties. To understand how the Lie algebra acts on a tensor product, we have to change notation
for this paragraph. We will denote the representations of the Lie group on vector spaceV andW by ρV andρW ,
and in general group representations byρ. The representations of the corresponding algebrag are denoted bydρV ,
dρW anddρ, respectively. This makes explicit that the linear operatorsdρ(uaXa) can be thought of as the linear
differentials of the linear operatorsρ(g), g = exp(iuaXa).

The group acts in the following way on the vector spaceV ×W with states|v〉 ⊗ |w〉:

ρV⊗W (g)|v〉 ⊗ |w〉 =
∑
v′,w′

|v′〉 ⊗ |w′〉
(
ρV⊗W (g)

)
(v′w′)(vw)

=

(∑
v′

|v′〉
(
ρV (g)

)
v′v

)
⊗

(∑
w′

|w′〉
(
ρW (g)

)
w′w

)
.

This means nothing else than the statement that the factors of the tensor products states transform independently
under the group action. Now, it is very easy to find how the algebra acts, sincedρ acts as derivation forρ. Thus,
we find(
1l + iuadρV⊗W (Ja)

)
|v〉 ⊗ |w〉 =

∑
v′,w′

|v′〉 ⊗ |w′〉〈v′| ⊗ 〈w′|
(
1l + iuadρV⊗W (Ja)

)
|v〉 ⊗ |w〉

=
∑
v′,w′

|v′〉 ⊗ |w′〉
(
δv′,vδw′,w + iua

(
dρV⊗W (Ja)

)
(v′w′)(vw)

)
=

∑
v′,w′

|v′〉 ⊗ |w′〉
(
δv′,v + iua

(
dρV (Ja)

)
v′v

) (
δw′,w + iua

(
dρW (Ja)

)
w′w

)
.
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To first order inu we thus get what we expect of a derivation:(
dρV⊗W (Ja)

)
(v′w′)(vw)

=
(
dρV (Ja)

)
v′v

δw′,w + δv′,v

(
dρW (Ja)

)
w′w

or simplydρV⊗W (Ja) = dρV (Ja) ⊗ 1lW + 1lV ⊗ dρW (Ja). It is often quite cumbersome to keep track of the
different representations and the explicit notion of the tensor products. Thus, the reader will often find shorter
notations such as

Ja (|v〉|w〉) = (Ja|v〉) |w〉+ |v〉 (Ja|w〉) .

One of the easier things to work out with tensor products are the eigenvalues of the generators which can be
diagonalized. We chose to diagonalize toJ3 and the eigenvalues of this generator simply add up:

J3 (|j1,m1〉|j2,m2〉) = (m1 + m2) (|j1,m1〉|j2,m2〉) .

The specific way how the Lie algebra acts on a tensor product is all one needs to decompose the tensor represen-
tation into irreps by applying the highest weight construction to the tensor states and use the derivation property
of the representation. That is exactly the procedure one goes through in quantum mechanics when decomposing,
for instance, the tensor product of aj = 1 and aj = 1/2 representation, starting with the (unique) highest weight
state|3/2, 3/2〉 = |1, 1〉|1/2, 1/2〉. This is left as an exercise.

Tensor operators. It might be helpful at this stage to repeat some stuff from quantum mechanics like tensor operators
and the Wigner-Eckart theorem. A tensor operatorO(r) of rank r is simply an operator which transforms in the
spinr irreducible representation, i.e.

[ρ(r)(Ja),O(r)
m ] =

∑
m′

O(r)
m′

(
ρ(r)(Ja)

)
m′m

.

Note that we now go back to use the symbolρ for a representation of the Lie algbera, instead ofdρ. Of course, a
tensor operator has components since otherwise it could not possibly transform according to the spinr representa-
tion. A brief example might help, a particle in a spherically symmetric potential. The angular momentum is given
by La = ε bc

a rbpc. The operatorsLa form a representation of the Lie algebrasu(2). Now, the position operator
rb is related to a rank one tensor operator (i.e. a tensor operator transforming in the spin one irrep), because it
transforms under the adjoint representation:

[ρ(Ja), rb] = ε cd
a [rcpd, rb] = −iε cd

a rcδb,d = −iε cd
a rc = rc(Ta)c

b = rc ad(Ja)c
b .

Note however, thatrb does not transform in the canonical way, since the representation matrices for the ad-
joint representation have not the standard form given above. If we have in general an operatorOb, such that
[ρ(Ja),Ob] =

∑
b′ Ob′ (ρ(Ja))b′b with ρ being equivalent to a spinr irrep, then we can find a matrixS such that

Sρ(Ja)S−1 = ρ(r)(Ja). We can then use this matrixS to redefine the tensor operator,O(r)
m = Ob(S−1)b

m. This
redefined operator now transforms precisely in the irrepρ(r), i.e. [ρ(r)(Ja),O(r)

m ] = [Sρ(Ja)S−1, (OS−1)m] =
Ob′(S−1) b′

m S c′

b′ (ρ(Ja))c′d′(S−1) d′

m′ = O(r)
m′ (ρ(r)(Ja))m′m. It is often not necessary to findS explicitly. If we

find a linear combinations of the componentsOb that is an eigenstate ofJ3 with eigenvaluer′, then we can take
this as a component ofO(r) and construct the other components by applyingJ±. For the position operator, this is
easy. We know that[ρ(J3), r3] = 0, thereforer3 can be identified with the componentr

(1)
0 . We find the other two

components by simply computing[ρ(1)(J±), r(1)
0 ] = r

(1)
±1 = ∓(r1 ± ir2)/

√
2.

Wigner-Eckart theorem. Tensor operators have the great advantage that their matrix elements are determined by the
su(2) symmetry upto a constant which is independent of the symmetry (usuallym this constant is determined by
the dynamics of the physical system under consideration). When a tensor operatorsO(r)

k acts on a state|j, m〉, the
whole object transforms in the tensor representationρ(r)⊗(j). Let us denote the coefficients of a base change from
the basis{|r, k〉|j, m〉 : k = −r, . . . , r , m = −j, . . . , j} to the basis{|J,M〉 : J = |r − j|, . . . r + j , M =
−J, . . . J} for the decomposition(r)⊗ (j) =

⊕r+j
J=|r−j|(J) by 〈J,M |r, k; j,m〉, theClebsh-Gordan coefficients.

These coefficients are entirely determined by thesu(2) structure, and can be obtained by applying the highest
weight construction to both bases, using the derivation property of the tensor representation. In essence, they are
determined upto some overall normalization and signs by the two recursion relations√

(j ∓m)(j ±m + 1)〈j1,m1; j2,m2|j, m± 1〉 =
√

(j1 ∓m1 + 1)(j1 ±m1)〈j1,m1 ∓ 1; j2,m2|j, m〉
+

√
(j2 ∓m2 + 1)(j2 ±m2)〈j1,m1, j2,m2 ∓ 1|j, m〉 ,
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subjecto to the conditionm1 + m2 = m ± 1. Note that we have used here the inverse base change, just because
we like to make things irritating for the reader;-) . Once we know these, the matrix elements of tensor operators
have the simple form

〈J,m′, x′|O(r)
k |j, m, x〉 = δm′,k+m〈J, k + m|r, k; j, m〉 〈J, x′||O(r)||j, x〉 ,

where〈J, x′||O(r)||j, x〉 is called thereduced matrix elementof the tensor operator. It only depends on the irreps
involved, and any remaining dynamical degrees of freedom, denoted herex′ andx, but not on the components,
i.e. the magnetic quantum numbers. Thus it depends neither on the inner structure of the involved irrpes, nor the
particular states in them. This statement is known as the Wigner-Eckart theorem. It is valid for any Lie algebra,
as we will see in due course, but here we have repeated it in the form well known from the theory of angular
momentum and spin in quantum mechanics.

Of course, what we have just said equally applies to products of tensor operators. Such productsO(r)
k O(r′o)

k′

simply transfrom in the tensor representation(r)⊗ (r′) and can thus be decomposed into a sum of tensor operators
by again the highest weight procedure. Also, theJ3 eigenvalues again simply add up, i.e. we get nothing else

than[ρ(r)⊗(r′)(J3),O(r)
k O(r′o)

k′ ] = (k + k′)O(r)
k O(r′o)

k′ . More generally, the action of the generatorsJa of the Lie
algebrasu(2) on a product of tensor operators is given as for tensor products of vector spaces, such that,

[ρ(r)⊗(r′)(Ja),O(r)
k O(r′)

k′ ] = [ρ(r)(Ja),O(r)
k ]O(r′)

k′ +O(r)
k [ρ(r′)(Ja),O(r′)

k′ ]

= O(r)
l O(r′)

k′

(
ρ(r)(Ja)

)
lk

+O(r)
k O(r′)

l′

(
ρ(r′)(Ja)

)
l′k′

.

ADDENDUM TO HANDOUT III

We have seen in handout III that the tangent space at any pointg of a Lie groupG carries the structure of a Lie
algebra. In particular, the tangent space at the identity element,TeG, carries this structure. The abstract Lie algebra
associated to a Lie group is therefore given by the identificationg ∼= TeG. Thus, the real dimension ofg is equal to
the dimensiond of the manifoldG. Equivalently,g can be identified with the space of left- or right-invariant vector
fields, and one may interchange the identifiactions freely.

Universal covering group. One important issue has to be clarified here. The Lie algebra carries almost all of the infor-
mation on the Lie group manifold. The only inforamtion about a finite-dimensional Lie groupG which is lost when
the linearized and purelylocal information encoded in its Lie algebrag is considered, are properties of topological
and entirely global nature. More precisely, the Lie algebra cannot contain any information that depends either on
the setπ0(G) of different connected components of the group manifold, or on the fundamental groupπ1(G). In
particular, for any simple compact real Lie algebrag, there is auniquecompact simple Lie group̃G, for which
the Lie algebra of invariant vector fields is isomorphic tog, and such that̃G is connectedandsimply connected.
This means that̃G has trivial groupsπ0(G̃) = 0 = π1(G̃). Moreover, one can show that for any connected Lie
groupG with the same Lie algebrag there is a surjectiver Lie group homomorphismϕ : G̃ −→ G such that
the kernel ofϕ is a subgroup of the center of̃G. This subgroup is then isomorphic toπ1(G). The center of a
groupG is the subgroup consisting of all those elementsh ∈ G which commute with all the elementsg ∈ G, i.e.
C(G) = {h ∈ G : hg = gh ∀g ∈ G}. For this reasoñG is also called theuniversal covering groupassociated
with the Lie algebrag.
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