Handout V for the course ®OUP THEORY IN PHYSICS Michael Flohr
Representation theory of semi-simple Lie algebras: Examyife) 21. December 2004 and 11. January 2005

GENERALIZING THE HIGHEST WEIGHT PROCEDURE FROMU(2) TO su(3)

We found the representations«f(2) by analysing the decompositions of their vector spaces into eigenspaces with
respect to the diagonalizable generatbrThe correct generalization of this procedure can be fully understood by
considering the next simple exampte,3). Any other semi-simple Lie algebgacan be analysed in exactly the
same manner. In order to emphasize the general validity of the concepts, | will often simplyuwriteead of

su(3), although explicit computations will always be performed for the example Lie algeb3a The good news

is: If you have understood how this general method works, you don'’t have to learn any other additional concepts
in order to understand Lie algebras.

Setup. The Lie groupSU (3) is the group of unitary x 3 matrices with determinant one. It is a nice exercise, to consider
instead the complex Lie groupL(3, C), which is the group o8 x 3 matrices with determinant one. For the latter
group, the complex dimension is therefalienc SL(3,C) = 8. The corresponding Lie algebs& 3, C) is given
by the traceles8 x 3 matrices. We decompose this Lie algebra as follat&, C) = h ® ny ® n_, whereh is
the Cartan subalgebrah C g, which is the maximal Abelian subalgebra. Remember that mutually commuting
diagonalizable matrices can be diagonalized simultaneously. The Cartan subalgebra takes the place of the single
elementH in thesu(2) algebra. In our example, we have

ay 0 0
h= 0 as O a1 +as+a3 =0, ,
0 0 as

i.e.dimc h = 2. The dimension of the Cartan subalgebra is also calledzahike of the Lie algbergy. The other

two subalgebras are spanned by the generdiprs These are matrices which have precisely one non-zero entry,
namely a one at the place where thit row and thej-th column intersect, i.&.F; ;) = d:;x0;;. Thus, we have

ny = span{E1 2, E1 3, E2 3}, andn_ = span{Es 1, F53 1, E3 2 }. Note that all this remains true feu(3), but we
leave it as an exercise to you to reduce the complex vector space to a real one.

Definitions. Let V' be an arbitrary representation @f An eigenvectorv € V of h C g is a vectorv, which is an
eigenvector for eacll € b,
H(v) =a(H)v, (%)

wherea(H) is a scalar which depends linearly &h i.e.« € h*.

An eigenvalueof the action ofy C g is an elemeniv € h*, such that there existsiac V', v # 0, for which (x)
holds. Aneigenspacassociated ta € h* is the subspac¥,, of all v € V, for which (x) holds.

The crucial generalization from the casg2), or sl(2, C), to a generic semi-simple Lie algehgds the ansatz,
that any finite dimensional representatignof g has a decompositiol’ = @, V.., whereV,, is eigenspace of
h C g, anda runs through a finite subset bf.

Adjoint Representation. To find the analoga oF. € su(2), observe that the Lie brackfl, E1] = £2F defines
the elementsZ, as eigenvectors of the adjoint action Hf on su(2). Note our change in normalization. The
normalization choosen here is more appropriate, if you wish to switch between the real and the complex case, i.e.
between consideringu(2) or sl(2, C). Let us therefore consider the adjoint representatiosi(8f C), which has

a decomposition
g=0ho (@ goz) )

wherea runs through a finite subset bf, andh acts on each spagg, by scalar multiplication, i.e.
VHebh,VY €g,:[H,Y]=ad(H)(Y)=a(H)Y .

Let M, (M), = my, be an arbitrary matrix. Its commutator with a diagonal mafix (D)x; = aidx is
([D, M)k = (ar, — a;)my,. This shall now be a scalar multiple 81 for all D. The only possibility for this is the
choiceM = E; ;. Thus, the matrice®; ; precisley generate the eigenspaces of the adjoint actiproofy. With
the above explicit definition df for si(3, C) the dual space is defined as

b* = spanc{L1, L, L3}/ {L1 + Lo + L3 = 0},



where the linear functionals; yield the dual basis to the standard basis of the diagdmaB matrices, i.e.

aq 0 0
Li 0 as 0 = Q; .
0 0 as

We conclude that the linear functionatsc h*, which occur in the decomposition sf(3, C) = h @ (D, g.), are
the six functionald.; — L;, 1 <i # j < 3. The spaceg., 1, are spanned by one element each, namelyZpy

-L 5

N

Ly-L 4

This drawing contains more or less all the information on the structure of the Lie gigbrd(3, C). For example,
let X € g,. To find out to wherexd(X') would mapY” € g, we only have to repeat ofiindamental computation
for an arbitraryH € b,

[H, [X, Y]] (X, [H, Y]] +[[H, X], Y]
= [X,p(H)Y] + [a(H) X, Y]

(a(H) + B(H))X,Y].

Thus,[X,Y] = ad(X)(Y) is again an eigenvector ¢f and it has eigenvalue + 5, i.e.ad(g.) : 93 — Ga+s-
Sincead(g,) maps eigenspaces to eigenspaces, the decompasitan® (P, g.) is preserved. In our picture,
all theg,, act by translation. Hence, the actiongef, _ 1., is given byad(gr,—r,)(9r,—1,) C b, ad(gr,—1,)(h) C
9L,—Ls» ad(ng—L3)(gL1—L3) =0 etc., i.e.

Arbitrary representation. This holds true in an analogous way for any representafiofis((3, C). The representation
has a decompositioi = &, V.., and theg, mapV; to V., g, since

H(X(v) = X(H(v))+ [ X](v)
= X(B(H) v+ (a(H) X)(v)
= (a(H)+p(H))X(v).

We can picture thé&/, by points in a (planar) diagram, which are maped into each other by,tiierough trans-
lation. Therefore, the eigenvalues which occur in the decomposition of an irréf differ from each other by
integerlinear combinations of the vectofs — L; € h*. This motivates some further very important definitions.

More definitions. Therootsare the seR = {L; — L; : i # j}. Their integer linear combinations span toet lattice
AR = @ ZL. Note that with this convention zero is not a root.



The eigenvalues, which occur in the decomposition of a representatioa &, V.., are called theveightsof the
representation. The differences of weights of a representation are always € Ag. Further, the eigenvectors
v € V, are calledveight vectorsgo the weightsy, and the eigenspac#&g are calledveight spacesThus, the roots
are the weights of the adjoint representation. Consequently,tlaee also calledoot spaces

Highest weights. We learned in the lecture that there exist so-cafigghest weightamong the weights, which have
the property that there exists a correspondiighest weight vectos € 1/, which is annihilated by one half of all
the roots. Therefore we have
LEMMA:Fv eV : (i) Jaeh* v eV, i) V0<i<j:E; ;(v)=0. O
As explained in the lecture, the ordering in (ii) is arbitrary, other ordering prescriptions define other highest weight
vectors. More precisely, on has a linear function b* — C, which can be choosen real if restriced to the
integer linear combinations of the;. The rootsa for which ¢(«) > 0, are calledbositiveroots. In our example,
l(ayLy + asLa + azL3) = aay + bag + caz with a > b > ¢ arbitrary real numbers, such thigf : /(v = 0)} is
irrational toA g, is a suitable choice. Furthermore, we defifg; = [E; ;, E; ;| = E;; — E; ;. There are special
roots among all the positive roots, which have the property that they cannot be written as a sum of two other
positive roots. Such roots are caladnpleroots. In our examplel., — L3 andL; — Lo are simple roots, while
Ly — Ly = (L1 — L2) + (Lo — L3) is not simple. Moreover, the following important fact holds: An irfégs
completely generated from a highest weight veetar V' through the images af under successively acting with
the F; ;, 0 < i < j. This has several immediate consequences:
(1) All 8 € b*, which occur in the decomposition &f, lie in a cone whose point is. Forg = s((3,C), thisis a
1/3-cone:

uB)<0\ ()
(2) dimV,, = 1, i.e. the highest weight vecteris unique up to normalization.
(3) dimVyyn(r,—1,) = dimV,,,—1,) = 1, since these spaces can only be generated by the action of
(Eq2,1)™(v) or (E32)™(v), respectively. More generally, this holds true for all spaces, whose weights lie on the
boundary of the cone.
Conversely, it is also true for an arbitrary representatioand a highest weight vecter e V' that the subrepre-
sentation C V generated from images ofunder successive action of ti& ;, 0 < ¢ < j, is irreducible. This
can easily be proven by complete induction. Taking all together we have
PrROPOSITION Any irrep W of g = sl(3, C) possesses an up to normalization unique highest weight vector. The

set of highest weight vectors of an arbitrary representdtidorms a union of linear subspac@s, corresponding
to the irrepd¥ in V, wheredimWyy is the multiplicity of W in V. O

Convex hull. One sees that, = g, ® H, @ g—o = sl(2, C). Note that in the lecture, we did writg, for thes,,, since
we did not deal directly with the strictly upper or lower triangular Lie algebras which we use in the approach of
this handout. In our example, we explicitly have that 1, = span{£; ;, H; ;, I/; ; } is a subalgebra ofi(3, C)
isomorphic tos((2, C) for ¢ < j. Analysing representations with respect to these subalgebras, one can exploit the
conditiondimV < oo in the same way as in our dealing with the representations (@). Let us, for instance,
considersy, r,. The spacéV = @, gatr(L,—r,) IS preserved undes,, r,, thus it is a representation of
s, -1, = sl(2,C). Therefore, the eigenvalues &f; , are integers oV and symmetric with respect to zefo.
Hence, the string of points in our diagram, which starts aihd leads in the direction @f; — L, , must be symmetric

INote once more that our normalization for the generators/(@, C) differs by a factor of two from the one choosen far(2) in the
lectures, which is the reason why all eigenvaluegfaiurn out to be integers.



with respect to a linéH; o, L) in the planey*. Itis no accident thak L (L, — L) also in our diagram. The string
of pointsg, 1 x(z,—r,) has finite length and is invariant and a reflection with respect to the fine, ).

In general one can considef, 1, = span{E;;, E;;, H;; = [E;;, E;]} = sl(2,C), which are all
subalgebras ofl(3, C). Thus, also the string of points, (., —r,) Must be invariant under reflection at the line
(Hz,3,L) = 0. Letm be the smallest number, for whi¢®, ;)™ (v) = 0, and let = a + (m — 1)(Ls — L) and
v" € V3. Per definitionen®, ; (v') = 0, and there exists n&, above the boundary of the cone, if&, 3(v') = 0
andE; 3(v") = 0. Thus,v’ is also a highest weight vector. Everything we did so fardfpcan be repreated fgt.

At the end of the string of point$s., (1, —r.,) we find av”, which again can be viewed as a highest weight vector,
and which is annihilated b¥’s ; andE5 ;. All this can be visualized in the following two diagrams:

g(u»ktL_TL 1 x

gm—k(L,L; / <H1_2, L>=0

It follows, after performing this procedure successively for all the higehst weight vectors which one obtains step by
step, that the eigenvalues, which occur in the decompositiéfn afe bounded by a hexagon which is symmetric
under reflections at the linegd; ;, L) = 0, and which has a vertex at the point Remark: The hexagon can
degenerate to a triangle under certain circumstances, if two of the corners coincide pairwise. Put differently, the
hexagon is the convex hull of the union of the imagesxainder the group of isometries of the plane, which

is generated by reflections at the ling3; ;, L) = 0. Sincesy, 1, = sl(2,C), the eigenvaluedl; ; < Z and
therefore it is true that € @@, ZL; = Aw. Aw is called theweight lattice We obtain

ProposiITION All eigenvalues of an finite dimensional irrépof s[(3, C) must lie on the latticé\yy C h*, which

is spanned by thé,. Furthermore, all weights of the representation must be congruent modulo theAagticey*,

which is spanned by the roofs — L. O

Note thatAw /Ar = Z/3 for g = sl(3,C), while for s[(2,C) we haveAw /Ar = Z/2. This results in the
following diagram:

Sokg Ly <H ,, L>=0

<H, 5, L>=0

/\ X <H‘_], L>=0
\

One should keep in mind that the spaé®s;; = @, gatr(z,—r,) are not the only subspaces invariant under
sr,—r,- In fact, for a givens € b*, which is eigenvalue of the decompositibh= @, V.., and for alli # j, the
spacedVs ; ; = D, 9p+k(L,—1,) form arepresentation ef,, 1, which, however, is not necessarily irreducible.

It follows from this fact that at least the numbgrfor wich Vs, (., -1,y # 0, form a gapless sequence of integers.
Thus, all points inside the convex hull, which are elemeta\gf/A R, also belong to the allowed eigenvalues.

In the above diagram, | have marked these points by open circles. A highest weight representation can thus be




understood diagrammatically in the following way: Choose within the lattigethe highest weight, construct the
convex hull and finally mark all points inside the convex hull which lie on the lattige/ A z. Let me summarize:
PROPOSITION Let V be an irrep ofs((3,C). Then there exists an € Ay C bh*, such that the set of weights,
which occur in the decomposition = QBB V3, is precisely the set of linear functionals congruentvtmodulo

A r and bounded by the convex hull, whose corners are given by the imagasnaler the action of the reflection
group generated from reflections with respect to the ligés;, L) = 0. O

EXPLICIT CONSTRUCTION OF IRREPS 0Kl(3, C)

To gain a complete undersanding of representationf ®fC), we first have to show the existence and uniqueness

of irreps. It would be desirabel to have a similarly explicit construction as in the cas@o€), where every irrep

can be written in terms of symmetric tensor produitan™ V' of the standard representation for some Z... Of

course, for the proper analysis of tensor products we not only need the weights of the representations, but also the
multiplicities with which they occur. (Fosu(2), each rep. can be written as a tensor product of spin 1/2 reps.)

Elementary examples. The standard representationstf3, C) is, of course, nothing else thit= C3. The eigenvectors
of the action ofy are naturally the standard basis vectorses, e3 with eigenvalued.,, Ls, Ls.

Since the eigenvalues of the dual of a representation of a Lie algebra are simply the negative eigenvalues of
the original representation, we immediately obtain fiat= C? with the canonical dual standard basfses, e
with eigenvalues-L;, — Ly, — L3. By the way, the representatiohSandV* are mapped into each other by the
automorphismX — —*X of s[(3,C). Furthermore}V* is isomorphic to/\2 V', whose weights are simply the
pairwise sums of different weights &f. Conversely}) = /\2 V.

We already know the adjoint representation. It has, in total, eight weights, ndmely.; for i # j, andin
addition the weight zero with multiplicity two (since dim= 2).

Next, we consideSym?V, Sym*V* andV @ V*. Weights of symmetric tensor products are given by the
sums of the weights of the original representations. There$gtaZ”V * possesses the weights 2L, —L; — Lj:
0<i<j}={-2L,—2L;,L; : 0 < i < j}. The weights of the tensor produt® V* are the sums of the
individual weights (quantum numbers of tensor product representations add!), which results in{the-sédt, }.
This set contains the element zero three times.1S® V* is not irreducibel, but a direct sum of the adjoint
and the trivial representation. The weight vectorsare e}, where the three weight vectoes © e; belong to
the threefold degenerate weight zero. More generally, it is true for each faithful represefitatitat the tensor
productiV @ W* contains the adjoint representation.

\ : ¢ B i - /<HL,_, L>=0

oy SYmOV @ Sym?V*

Sym?Vi.“
K £ <H, 5, L==0

/ \ 91, 10

Irreducible representations. It follows from our considerations so far on the weights of representatiosi§HfC), that
each highest weight vector must lie in thée)-plane defined by the inequalitié&l; o, L) > 0 and(Hz 3, L) > 0.



Thus, a highest weight vector necessarily has the foen(a + b)L; + bLy = aL; — bL3 for two non-negative
integersa, b € Z,.. Hence, our construction scheme yields the theorem:
THEOREM: For each pair of non-negative integers there exists a unique finite dimensional irigp, of s((3, C)

with higehst weight vectos = aL; — bL3. O
One can show thdt, ;, C Sym®V @ Sym®V*. More precisely, one has thBy, , = Ker(zq,4) With 254 : Sym*V @
Sym’V* — Sym®~'V ® Sym®~'V* a map which performs the contractiom, - ... - v,) ® (vf - ... v})
Zi_’j(vi,vﬁ(m S /S I VR B ...-va)®(v1‘ . ...~’U;-<_1 -’U;f_i_l ’U;;)

| collected all the examples considered so far in the above diagraamd V' * are green, their symmetric
tensor products are black. The adjoint representation is blue, and the tensor haddet © Sym?V* is red.
The weight diagram ddym“V ® Sym®V*, or equivalently of", ;, is shown for the examplgym®V @ Sym?V*.
The occuring highest weights are, from outer to inner 06&s,— 2L3, 5L1 — L3, 4L, and finallyL;. In general,
one has for the case > b firstly a sequence of concentric (not necessarily regular) hexagons with corner points
(a —i)Ly — (b—1)Ls, i = 0,1,...b — 1, followed by a sequence of trianlges (after the smaller edge of the
hexagons has shrunken to zero) with corner pdiats b — 3j)L1, j = 0,1,...,[5(a — b)]. The last expression
means the Gauss bracket. The multiplicities of the hexagbnand trianlgesI; (note thatl, = H,) are for
SymV @ Sym®V* as followsmult (H;) = 1 (i + 1)(i + 2) andmult(7};) = 1(b+ 1)(b + 2). The multiplicities
for I', », on the other hand, ateult(H;) = (i + 1) andmult(7}) = b. Put differently, the multiplicities fof',
increase from outer to inner hulls, starting with one and increasing by one until the sequence of triangles is reached
afterb — 1 steps. From then on, the multiplicity stays constant for all triangles at the baluethe following
diagram, the multiplicities for the representatibg, are denoted by concentric circles. Obviously, this is not a
very effective way, to visualize representations graphically, and indeed, there are much better methods

Aot 1m0

" 6Ly 2Ly

<H, 5 L0

The decomposition of an arbitrary representatibmto irrepsl’, ; can be found in the following way:

(1) Write down the decomposition &f into eigenvalues, i.e. weights = P, Us.

(2) Find the weightx = aL; — bL3 occuring in this decomposition, for whidiic) becomes maximal.

(3) Thus,U must contain a copy of the irrdp, =T, i.e.U =T, & U’ for aU’. Since the weight diagram of

T, is known, you can obtain the weight diagram{@ffrom it.

(4) Repeat the above procedure of.

As an exercise, you might try to decompose in this way the tensor prédect’s ; ® V' into irreps. The solution

isU =T3; &I 2 @Iy o. With the map, ; described somewhere above, one can show more generally that for
b<a

b
Sym®V @ Sym’V* = @ Toip—i-
i=1

In particular, we have thus thalt, o = Sym"V andIl'y ,, = Sym"V*.



