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GENERALIZING THE HIGHEST WEIGHT PROCEDURE FROMsu(2) TO su(3)

We found the representations ofsu(2) by analysing the decompositions of their vector spaces into eigenspaces with
respect to the diagonalizable generatorH. The correct generalization of this procedure can be fully understood by
considering the next simple example,su(3). Any other semi-simple Lie algebrag can be analysed in exactly the
same manner. In order to emphasize the general validity of the concepts, I will often simply writeg instead of
su(3), although explicit computations will always be performed for the example Lie algebrasu(3). The good news
is: If you have understood how this general method works, you don’t have to learn any other additional concepts
in order to understand Lie algebras.

Setup. The Lie groupSU(3) is the group of unitary3×3 matrices with determinant one. It is a nice exercise, to consider
instead the complex Lie groupSL(3, C), which is the group of3× 3 matrices with determinant one. For the latter
group, the complex dimension is thereforedimC SL(3, C) = 8. The corresponding Lie algebrasl(3, C) is given
by the traceless3 × 3 matrices. We decompose this Lie algebra as follows:sl(3, C) = h ⊕ n+ ⊕ n−, whereh is
the Cartan subalgebra, h ⊂ g, which is the maximal Abelian subalgebra. Remember that mutually commuting
diagonalizable matrices can be diagonalized simultaneously. The Cartan subalgebra takes the place of the single
elementH in thesu(2) algebra. In our example, we have

h =


 a1 0 0

0 a2 0
0 0 a3

 : a1 + a2 + a3 = 0

 ,

i.e. dimC h = 2. The dimension of the Cartan subalgebra is also called therank of the Lie algberag. The other
two subalgebras are spanned by the generatorsEi,j . These are matrices which have precisely one non-zero entry,
namely a one at the place where thei-th row and thej-th column intersect, i.e.(Ei,j)kl = δikδjl. Thus, we have
n+ = span{E1,2, E1,3, E2,3}, andn− = span{E2,1, E3,1, E3,2}. Note that all this remains true forsu(3), but we
leave it as an exercise to you to reduce the complex vector space to a real one.

Definitions. Let V be an arbitrary representation ofg. An eigenvectorv ∈ V of h ⊂ g is a vectorv, which is an
eigenvector for eachH ∈ h,

H(v) = α(H) v , (∗)

whereα(H) is a scalar which depends linearly onH, i.e.α ∈ h∗.
An eigenvalueof the action ofh ⊂ g is an elementα ∈ h∗, such that there exists av ∈ V , v 6= 0, for which (∗)
holds. Aneigenspaceassociated toα ∈ h∗ is the subspaceVα of all v ∈ V , for which(∗) holds.
The crucial generalization from the casesu(2), or sl(2, C), to a generic semi-simple Lie algebrag is the ansatz,
that any finite dimensional representationV of g has a decompositionV =

⊕
α Vα, whereVα is eigenspace of

h ⊂ g, andα runs through a finite subset ofh∗.

Adjoint Representation. To find the analoga ofE± ∈ su(2), observe that the Lie bracket[H,E±] = ±2E± defines
the elementsE± as eigenvectors of the adjoint action ofH on su(2). Note our change in normalization. The
normalization choosen here is more appropriate, if you wish to switch between the real and the complex case, i.e.
between consideringsu(2) or sl(2, C). Let us therefore consider the adjoint representation ofsl(3, C), which has
a decomposition

g = h⊕

(⊕
α

gα

)
,

whereα runs through a finite subset ofh∗, andh acts on each spacegα by scalar multiplication, i.e.

∀H ∈ h , ∀Y ∈ gα : [H,Y ] ≡ ad(H)(Y ) = α(H) Y .

Let M , (M)kl = mkl, be an arbitrary matrix. Its commutator with a diagonal matrixD, (D)kl = akδkl is
([D,M ])kl = (ak − al)mkl. This shall now be a scalar multiple ofM for all D. The only possibility for this is the
choiceM = Ei,j . Thus, the matricesEi,j precisley generate the eigenspaces of the adjoint action ofh ong. With
the above explicit definition ofh for sl(3, C) the dual space is defined as

h∗ = spanC{L1, L2, L3}/ {L1 + L2 + L3 = 0} ,
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where the linear functionalsLi yield the dual basis to the standard basis of the diagonal3× 3 matrices, i.e.

Li

 a1 0 0
0 a2 0
0 0 a3

 = ai .

We conclude that the linear functionalsα ∈ h∗, which occur in the decomposition ofsl(3, C) = h⊕ (
⊕

α gα), are
the six functionalsLi −Lj , 1 ≤ i 6= j ≤ 3. The spacesgLi−Lj

are spanned by one element each, namely byEi,j .

This drawing contains more or less all the information on the structure of the Lie algbrag = sl(3, C). For example,
let X ∈ gα. To find out to wheread(X) would mapY ∈ gβ , we only have to repeat ourfundamental computation
for an arbitraryH ∈ h,

[H, [X, Y ]] = [X, [H,Y ]] + [[H,X], Y ]
= [X, β(H) Y ] + [α(H) X, Y ]
= (α(H) + β(H))[X, Y ] .

Thus,[X, Y ] = ad(X)(Y ) is again an eigenvector ofh, and it has eigenvalueα + β, i.e. ad(gα) : gβ → gα+β .
Sincead(gα) maps eigenspaces to eigenspaces, the decompositiong = h⊕ (

⊕
α gα) is preserved. In our picture,

all thegα act by translation. Hence, the action ofgL1−L3 is given byad(gL1−L3)(gL3−L1) ⊂ h, ad(gL1−L3)(h) ⊂
gL1−L3 , ad(gL1−L3)(gL1−L3) = 0 etc., i.e.

.

Arbitrary representation. This holds true in an analogous way for any representationV of sl(3, C). The representation
has a decompositionV =

⊕
α Vα, and thegα mapVβ to Vα+β , since

H(X(v)) = X(H(v)) + [H,X](v)
= X(β(H) v + (α(H)X)(v)
= (α(H) + β(H))X(v) .

We can picture theVα by points in a (planar) diagram, which are maped into each other by thegα through trans-
lation. Therefore, the eigenvaluesα, which occur in the decomposition of an irrepV , differ from each other by
integerlinear combinations of the vectorsLi − Lj ∈ h∗. This motivates some further very important definitions.

More definitions. Therootsare the setR = {Li − Lj : i 6= j}. Their integer linear combinations span theroot lattice
ΛR =

⊕
L∈R ZL. Note that with this convention zero is not a root.
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The eigenvaluesα, which occur in the decomposition of a representationV =
⊕

α Vα, are called theweightsof the
representation. The differences of weights of a representation are alwaysα − α′ ∈ ΛR. Further, the eigenvectors
v ∈ Vα are calledweight vectorsto the weightsα, and the eigenspacesVα are calledweight spaces. Thus, the roots
are the weights of the adjoint representation. Consequently, thegα are also calledroot spaces.

Highest weights. We learned in the lecture that there exist so-calledhighest weightsamong the weightsα, which have
the property that there exists a correspondinghighest weight vectorv ∈ V , which is annihilated by one half of all
the roots. Therefore we have
LEMMA : ∃v ∈ V : (i) ∃α ∈ h∗ : v ∈ Vα; (ii) ∀0 < i < j : Ei,j(v) = 0. �
As explained in the lecture, the ordering in (ii) is arbitrary, other ordering prescriptions define other highest weight
vectors. More precisely, on has a linear function` : h∗ → C, which can be choosen real if restriced to the
integer linear combinations of theLi. The rootsα for which `(α) > 0, are calledpositiveroots. In our example,
`(a1L1 + a2L2 + a3L3) = aa1 + ba2 + ca3 with a > b > c arbitrary real numbers, such that{γ : `(γ = 0)} is
irrational toΛR, is a suitable choice. Furthermore, we defineHi,j = [Ei,j , Ej,i] = Ei,i − Ej,j . There are special
roots among all the positive roots, which have the property that they cannot be written as a sum of two other
positive roots. Such roots are caleldsimpleroots. In our example,L2 − L3 andL1 − L2 are simple roots, while
L1 − L3 = (L1 − L2) + (L2 − L3) is not simple. Moreover, the following important fact holds: An irrepV is
completely generated from a highest weight vectorv ∈ V through the images ofv under successively acting with
theEj,i, 0 < i < j. This has several immediate consequences:
(1) All β ∈ h∗, which occur in the decomposition ofV , lie in a cone whose point isα. Forg = sl(3, C), this is a
1/3-cone:

(2) dimVα = 1, i.e. the highest weight vectorv is unique up to normalization.
(3) dimVα+n(L2−L1) = dimVα+n(L3−L2) = 1, since these spaces can only be generated by the action of
(E2,1)n(v) or (E3,2)n(v), respectively. More generally, this holds true for all spaces, whose weights lie on the
boundary of the cone.
Conversely, it is also true for an arbitrary representationV and a highest weight vectorv ∈ V that the subrepre-
sentationW ⊂ V generated from images ofv under successive action of theEj,i, 0 < i < j, is irreducible. This
can easily be proven by complete induction. Taking all together we have
PROPOSITION: Any irrep W of g = sl(3, C) possesses an up to normalization unique highest weight vector. The
set of highest weight vectors of an arbitrary representationV forms a union of linear subspacesΨW corresponding
to the irrepsW in V , wheredimΨW is the multiplicity ofW in V . �

Convex hull. One sees thatsα = gα ⊕Hα ⊕ g−α
∼= sl(2, C). Note that in the lecture, we did writegα for thesα, since

we did not deal directly with the strictly upper or lower triangular Lie algebras which we use in the approach of
this handout. In our example, we explicitly have thatsLi−Lj

= span{Ei,j ,Hi,j , Ej,i} is a subalgebra ofsl(3, C)
isomorphic tosl(2, C) for i < j. Analysing representations with respect to these subalgebras, one can exploit the
conditiondimV < ∞ in the same way as in our dealing with the representations ofsu(2). Let us, for instance,
considersL1−L2 . The spaceW =

⊕
k gα+k(L2−L1) is preserved undersL1−L2 , thus it is a representation of

sL1−L2
∼= sl(2, C). Therefore, the eigenvalues ofH1,2 are integers onW and symmetric with respect to zero.1

Hence, the string of points in our diagram, which starts atα and leads in the direction ofL2−L1, must be symmetric

1Note once more that our normalization for the generators ofsl(2, C) differs by a factor of two from the one choosen forsu(2) in the
lectures, which is the reason why all eigenvalues ofH turn out to be integers.
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with respect to a line〈H1,2, L〉 in the planeh∗. It is no accident thatL ⊥ (L1−L2) also in our diagram. The string
of pointsgα+k(L2−L1) has finite length and is invariant and a reflection with respect to the line〈H1,2, L〉.

In general one can considersLi−Lj
= span{Ei,j , Ej,i,Hi,j = [Ei,j , Ej,i]} ∼= sl(2, C), which are all

subalgebras ofsl(3, C). Thus, also the string of pointsgα+k(L3−L2) must be invariant under reflection at the line
〈H2,3, L〉 = 0. Let m be the smallest number, for which(E2,1)m(v) = 0, and letβ = α + (m− 1)(L2 −L1) and
v′ ∈ Vβ . Per definitionemE2,1(v′) = 0, and there exists noVγ above the boundary of the cone, i.e.E2,3(v′) = 0
andE1,3(v′) = 0. Thus,v′ is also a highest weight vector. Everything we did so far forα, can be repreated forβ.
At the end of the string of pointsgβ+k(L3−L1) we find av′′, which again can be viewed as a highest weight vector,
and which is annihilated byE3,1 andE2,1. All this can be visualized in the following two diagrams:

It follows, after performing this procedure successively for all the higehst weight vectors which one obtains step by
step, that the eigenvalues, which occur in the decomposition ofV , are bounded by a hexagon which is symmetric
under reflections at the lines〈Hi,j , L〉 = 0, and which has a vertex at the pointα. Remark: The hexagon can
degenerate to a triangle under certain circumstances, if two of the corners coincide pairwise. Put differently, the
hexagon is the convex hull of the union of the images ofα under the group of isometries of the plane, which
is generated by reflections at the lines〈Hi,j , L〉 = 0. SincesLi−Lj

∼= sl(2, C), the eigenvaluesHi,j ∈ Z and
therefore it is true thatα ∈

⊕
i ZLi = ΛW . ΛW is called theweight lattice. We obtain

PROPOSITION: All eigenvalues of an finite dimensional irrepV of sl(3, C) must lie on the latticeΛW ⊂ h∗, which
is spanned by theLi. Furthermore, all weights of the representation must be congruent modulo the latticeΛR ⊂ h∗,
which is spanned by the rootsLi − Lj . �
Note thatΛW /ΛR = Z/3 for g = sl(3, C), while for sl(2, C) we haveΛW /ΛR = Z/2. This results in the
following diagram:

One should keep in mind that the spacesWα,i,j =
⊕

k gα+k(Li−Lj) are not the only subspaces invariant under
sLi−Lj

. In fact, for a givenβ ∈ h∗, which is eigenvalue of the decompositionV =
⊕

α Vα, and for alli 6= j, the
spacesWβ,i,j =

⊕
k gβ+k(Li−Lj) form a representation ofsLi−Lj

which, however, is not necessarily irreducible.
It follows from this fact that at least the numberk, for wichVβ+k(Li−Lj) 6= 0, form a gapless sequence of integers.
Thus, all points inside the convex hull, which are elemets ofΛW /ΛR, also belong to the allowed eigenvalues.
In the above diagram, I have marked these points by open circles. A highest weight representation can thus be
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understood diagrammatically in the following way: Choose within the latticeΛW the highest weight, construct the
convex hull and finally mark all points inside the convex hull which lie on the latticeΛW /ΛR. Let me summarize:
PROPOSITION: Let V be an irrep ofsl(3, C). Then there exists anα ∈ ΛW ⊂ h∗, such that the set of weights,
which occur in the decompositionV =

⊕
β Vβ , is precisely the set of linear functionals congruent toα modulo

ΛR and bounded by the convex hull, whose corners are given by the images ofα under the action of the reflection
group generated from reflections with respect to the lines〈Hi,j , L〉 = 0. �

EXPLICIT CONSTRUCTION OF IRREPS OFsl(3, C)

To gain a complete undersanding of representations ofsl(3, C), we first have to show the existence and uniqueness
of irreps. It would be desirabel to have a similarly explicit construction as in the case ofsl(2, C), where every irrep
can be written in terms of symmetric tensor productsSymnV of the standard representation for somen ∈ Z+. Of
course, for the proper analysis of tensor products we not only need the weights of the representations, but also the
multiplicities with which they occur. (Forsu(2), each rep. can be written as a tensor product of spin 1/2 reps.)

Elementary examples.The standard representation ofsl(3, C) is, of course, nothing else thatV ∼= C3. The eigenvectors
of the action ofh are naturally the standard basis vectorse1, e2, e3 with eigenvaluesL1, L2, L3.

Since the eigenvalues of the dual of a representation of a Lie algebra are simply the negative eigenvalues of
the original representation, we immediately obtain thatV ∗ ∼= C3 with the canonical dual standard basise∗1, e

∗
2, e

∗
3

with eigenvalues−L1,−L2,−L3. By the way, the representationsV andV ∗ are mapped into each other by the
automorphismX 7→ −tX of sl(3, C). Furthermore,V ∗ is isomorphic to

∧2
V , whose weights are simply the

pairwise sums of different weights ofV . Conversely,V ∼=
∧2

V ∗.

We already know the adjoint representation. It has, in total, eight weights, namelyLi−Lj for i 6= j, and in
addition the weight zero with multiplicity two (since dimh = 2).

Next, we considerSym2V , Sym2V ∗ andV ⊗ V ∗. Weights of symmetric tensor products are given by the
sums of the weights of the original representations. Therefore,Sym2V ∗ possesses the weights{−2Lk,−Li−Lj :
0 < i < j} = {−2Li − 2Lj , Lk : 0 < i < j}. The weights of the tensor productV ⊗ V ∗ are the sums of the
individual weights (quantum numbers of tensor product representations add!), which results in the set{Li − Lj}.
This set contains the element zero three times. So,V ⊗ V ∗ is not irreducibel, but a direct sum of the adjoint
and the trivial representation. The weight vectors areei ⊗ e∗j , where the three weight vectorsei ⊗ e∗i belong to
the threefold degenerate weight zero. More generally, it is true for each faithful representationW that the tensor
productW ⊗W ∗ contains the adjoint representation.

Irreducible representations. It follows from our considerations so far on the weights of representations ofsl(3, C), that
each highest weight vector must lie in the( 1

6 )-plane defined by the inequalities〈H1,2, L〉 ≥ 0 and〈H2,3, L〉 ≥ 0.
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Thus, a highest weight vector necessarily has the formv = (a + b)L1 + bL2 = aL1 − bL3 for two non-negative
integersa, b ∈ Z+. Hence, our construction scheme yields the theorem:
THEOREM: For each pair of non-negative integersa, b there exists a unique finite dimensional irrepΓa,b of sl(3, C)
with higehst weight vectorv = aL1 − bL3. �
One can show thatΓa,b ⊂ SymaV ⊗SymbV ∗. More precisely, one has thatΓa,b = Ker(ıa,b) with ıa,b : SymaV ⊗
SymbV ∗ → Syma−1V ⊗ Symb−1V ∗ a map which performs the contraction(v1 · . . . · va) ⊗ (v∗1 · . . . · v∗b ) 7→∑

i,j〈vi, v
∗
j 〉(v1 · . . . · vi−1 · vi+1 · . . . · va)⊗ (v∗1 · . . . · v∗j−1 · v∗j+1 · . . . · v∗b ).

I collected all the examples considered so far in the above diagram.V andV ∗ are green, their symmetric
tensor products are black. The adjoint representation is blue, and the tensor productSym6V ⊗ Sym2V ∗ is red.
The weight diagram ofSymaV ⊗ SymbV ∗, or equivalently ofΓa,b, is shown for the exampleSym6V ⊗ Sym2V ∗.
The occuring highest weights are, from outer to inner ones,6L1 − 2L3, 5L1 −L3, 4L1 and finallyL1. In general,
one has for the casea ≥ b firstly a sequence of concentric (not necessarily regular) hexagons with corner points
(a − i)L1 − (b − i)L3, i = 0, 1, . . . b − 1, followed by a sequence of trianlges (after the smaller edge of the
hexagons has shrunken to zero) with corner points(a − b − 3j)L1, j = 0, 1, . . . , [ 13 (a − b)]. The last expression
means the Gauss bracket. The multiplicities of the hexagonsHi and trianlgesTj (note thatT0 = Hb) are for
SymaV ⊗ SymbV ∗ as follows:mult(Hi) = 1

2 (i + 1)(i + 2) andmult(Tj) = 1
2 (b + 1)(b + 2). The multiplicities

for Γa,b, on the other hand, aremult(Hi) = (i + 1) andmult(Tj) = b. Put differently, the multiplicities forΓa,b

increase from outer to inner hulls, starting with one and increasing by one until the sequence of triangles is reached
after b − 1 steps. From then on, the multiplicity stays constant for all triangles at the valueb. In the following
diagram, the multiplicities for the representationΓ6,2 are denoted by concentric circles. Obviously, this is not a
very effective way, to visualize representations graphically, and indeed, there are much better methods. . .

The decomposition of an arbitrary representationU into irrepsΓa,b can be found in the following way:
(1) Write down the decomposition ofU into eigenvalues, i.e. weightsU =

⊕
β Uβ .

(2) Find the weightα = aL1 − bL3 occuring in this decomposition, for which̀(α) becomes maximal.
(3) Thus,U must contain a copy of the irrepΓα = Γa,b, i.e.U ∼= Γα ⊕ U ′ for aU ′. Since the weight diagram of
Γα is known, you can obtain the weight diagram ofU ′ from it.
(4) Repeat the above procedure forU ′.
As an exercise, you might try to decompose in this way the tensor productU = Γ2,1 ⊗ V into irreps. The solution
is U ∼= Γ3,1 ⊕ Γ1,2 ⊕ Γ2,0. With the mapıa,b described somewhere above, one can show more generally that for
b ≤ a

SymaV ⊗ SymbV ∗ =
b⊕

i=1

Γa−i,b−i .

In particular, we have thus thatΓn,0 = SymnV andΓ0,n = SymnV ∗.
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