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IRREDUCIBLE REPRESENTATIONS OF A SEMI-SIMPLE L IE ALGEBRA

The method with which we found the finite-dimensional irreps ofsl(3, C), or su(3), respectively, can immediately
be generalized to any semi-simple Lie algebra. This yields a procedure in eight steps, which I will sketch here very
briefly. The semi-simple Lie algebra is denoted byg.

[I] Cartan subalgebra. Find the maximal Abelian subalgebrah ⊂ g.

[II] Cartan decomposition. Perform the Cartan decompositiong = h ⊕
(⊕

α∈R gα

)
for the adjoint representation,

where theroot spacesgα are defined by the condition

∀H ∈ h,∀X ∈ gα : ad(H)(X) = α(H)X

for α ∈ R ⊂ h∗, the set of therootsof g. We have:
(1) dimgα = 1;
(2) rankg ≡ rankΛR = dimh with ΛR = spanZR theroot lattice;
(3) α ∈ R ⇐⇒ −α ∈ R.

Let V be a finite-dimensional irrep ofg. Perform the Cartan decomposition forV analogously, i.e. decompose
V =

⊕
α∈W (V ) Vα, where theweight spacesVα are defined by the condition

∀H ∈ h,∀v ∈ Vα : H(v) = α(H) v

for α ∈ W (V ) ⊂ h∗, the set of theweightsof the representationV . We have:
(1) dimVα = mult(α) in the representationV ;
(2) the root spaces act on theVα in such a way thatgβ : Vα → Vα+β for all β ∈ R. Then, obviously, it is true that
∀α, α′ ∈ W (V ) : α− α′ ∈ ΛR.

[III] Root subalgebras. Find for each rootα the corresponding subalgebrasα = gα⊕ g−α⊕ [gα, g−α] ∼= sl(2, C). we
have:
(1) [gα, g−α] 6= 0, such that[gα, g−α] ⊂ h, dim[gα, g−α] = 1;
(2) [[gα, g−α], gα] 6= 0, so that one can find generators, which satisfy the standard Lie brackets ofsl(2, C). In
particular, there exists aHα ∈ [gα, g−α] with α(Hα) = 2.

[IV] Weight lattice. Make use of the rather simple representation theory of thesα
∼= sl(2, C) in order to construct the

latticeΛW = {β ∈ h∗ : β(Hα) ∈ Z ∀α ∈ R}, since all eigen values ofHα have to be integers. Obviously, for
any finite-dimensional irrepV is the set of weightsW (V ) ⊂ ΛW . In particular,R ⊂ ΛW , thereforeΛR ⊂ ΛW is
a sublattice with finite index.

[V] Weyl group. Use the fact that the weights of representations ofsα
∼= sl(2, C) possess a reflection symmetry by

introducing the reflectionsWα,

Wα(β) = β − 2
2β(Hα)
α(Hα)

α = β − β(Hα)α ,

which map the hyperplanesΩα = {β ∈ h∗ : 〈Hα, β〉 = 0} into themselves, and reflect the linesCα into
themselves, i.e.Wα(α) = −α. The groupW generated from theWα, α ∈ R, is calledWeyl group. In particular,
one has that the set of weights of a representation is invariant under the Weyl group, i.e.W(W (V )) = W (V ).

[VI] Killing form. Define the Killing formg(X, Y ) = tr(ad(X) ◦ ad(Y )) as Scalar product ong, thus also onh ⊂ g,
which naturally extends to a scalar product onh∗ ∼= h. The Weyl group is then nothing else than the orthogonal
group,W = O(ΛW ), i.e.g(Wα(β),Wα(β′)) = g(β, β′) for all Wα ∈ W, β, β′ ∈ ΛW ⊂ h∗. With respect to this
scalar product the lineCα and the hyperplaneΩα are orthogonal, i.e.α ⊥ Ωα. The scalar productg(·, ·) is positive
definite onh.

[VII] Highest weights and highest weight vectors.Choose a direction inh∗ by choosing a real linear functioǹ :
ΛR → R, which divides the roots into two equally sized subsetsR = R+ ∪R−. Here,R+ = {α ∈ R : `(α) > 0}
is the set ofpositive roots, and analogouslyR− = {α ∈ R : `(α) < 0} is the set ofnegative roots. For a
representationV of g we call a vectorv ∈ V , which is eigen vector to allH ∈ h, and which simultaneously is
in the kernel of all root spaces of the positive roots, ahighest weight vector, i.e.v ∈ V is a highest weight vector
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with highest weightor dominant weightα⇐⇒H(v) = α(H) v for all H ∈ h, andgα(v) = 0 for all α ∈ R+. We
have:
(1) Any finite-dimensional representationV of g possesses a highest weight vector;
(2) To any finite dimensional representationV of g with highest weight vectorv ∈ V is the subrepresentation
W = span{v, gα(v), gαgα′(v), . . . : α, α′, . . . ∈ R−} ⊂ V irreducible;
(3) Any finite-dimensional irrepV of g has (up to normalization) a unique highest weight vector.

The so-called (positive)primitive or simple rootsare those positive roots, which are not the sum of two other
positive roots, i.e.R+

p = {α ∈ R+ : α 6= α′+α′′ for α′, α′′ ∈ R+}. Analogously one defines negative simple roots
R−

p . Then, the above definition ofW ⊂ V simplifies toW = span{v, gα(v), gαgα′(v), . . . : α, α′, . . . ∈ R−
p }.

The (closed) Weyl chamberW is the region inh∗, within which all possible highest weights must reside. It is
defined asW = {α ∈ spanRR : α(Hγ) ≥ 0 ∀γ ∈ R+}. An equivalent definition is as the closure of a connected
component of the complement of the union of the hyperplanesΩα.

[IIX] Classification of irreps. Now, we have everything in place to completely describe all finite-dimensional irreps of
a semi-simple Lie algebrag.
THEOREM: For anyα ∈ W ∩ ΛW there is exactly one finite-dimensional irrepΓα with α its highest weight. Let
C denote the closure of the open convex hull, whose vertices are given by the images ofα under the action of the
Weyl groupW. Then, the set of weights of the irrepΓα are given byW (Γα) = {β ∈ ΛW ∩ C : β − α ∈ ΛR}.
Let the positive simple roots be labeled in an arbitrary manner as{α1, . . . , αn} = R+

p , n = rankg. Then there
exist weightsωi ∈ h∗, 1 ≤ i ≤ n, such thatωi(Hαj

) = δij . These weights are calledfundamental weights. Each
highest weight can be written in a unique way as linear combinationα = a1ω1 + . . . + anωn, where allai ∈ Z+.
Thus, often the notationΓα = Γa1ω1+...+anωn

= Γa1,...,an
is used.

DYNKIN DIAGRAMS

If rankg > 2, it is not very well possible to explicitly draw weight diagrams as we did forsu(3). Fortunately,
there is a much more efficient way to graphically denote representations, which has been developed mainly by
Dynkin. I will sketch here briefly, how all (semi-)simple Lie algebras can easily be classified with the help of a
graphical notation, the so-called Dynkin diagrams, which encodes all the information on the Lie algebra. If one
adds, in addition, the numbersa1, . . . an, ai = g(α, αi), then the diagram also encodes all the information about
the representationsΓα, where I use the notation from [IIX].

Root systems.Let g be a semi-simple Lie algebra,h its Cartan subalgebra,g its Killing form, etc. The Euclidian space
E = spanRR is a real subvectorspace ofh∗, on whichg is positive definite. To characterize a Lie algebra, it
suffices to classify the possible root systemsR ⊂ E up to rotations und scalar multiplicationen. A root system has
the properties:
[i] |R| < ∞, spanRR = E;
[ii] α ∈ R =⇒ −α ∈ R, and more strictlyα ∈ R =⇒ R ∩ {Rα} = {α,−α};
[iii] α ∈ R =⇒ Wα : R → R with Wα the reflection in theα⊥-plane;
[iv] α, β ∈ R =⇒ ηβα = β(Hα) ∈ Z. The quantityηβα and the Weyl reflectionWα can be expressed via the
Killing form,

ηβα = 2
g(β, α)
g(α, α)

, Wα(β) = β − ηβαα .

Condition [iv] is very restrictive, since it restricts the angleθ between to rootsα, β to a very few possibilities.
With cos θ = g(β, α)/

√
g(α, α)g(β, β), it follows thatηβα = 2

√
g(β, β)/g(α, α) cos θ ∈ Z, thus4 cos2 θ =

ηαβηβα ∈ Z. This leaves only the possibilities4 cos2 θ ∈ {0, 1, 2, 3, 4}, where the last case4 cos2 θ = 4 occurs
only in the trivial settingβ = ±α. Without loss of generality one can assume thatg(β, β) ≥ g(α, α), or |ηβα| ≥
|ηαβ |, respectively. This leads to the following table of non-trivial possibilities:

4 cos2 θ 3 2 1 0 1 2 3
cos θ

√
3/2

√
2/2 1/2 0 −1/2 −

√
2/2 −

√
3/2

θ π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6
ηβα 3 2 1 0 −1 −2 −3
ηαβ 1 1 1 0 −1 −1 −1√

g(β,β)
g(α,α)

√
3

√
2 1 ∗ 1

√
2

√
3
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Let nown = dimRE = dimCh = rankg. Below, all root systems for1 ≤ n ≤ 3 are sketched:

= sp4C 2G

= so6C

n = 2

n = 3

n = 1
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A A A B

A B C
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1

3 3 3

×

= sl

= sl = so

= sl = so = sp4 7

53

2

6

C

C C

CCC

With a suitable but otherwise arbitrary semi-ordering` : E → R we divide the roots into two halfs,R = R+∪R−.
The positive simple roots for the classical Lie algebras are given in terms of the basic weightsLi as follows:

R+
p =


{Li − Li+1 : i = 1, . . . , n} for sl(n + 1, C) = An ,
{Li − Li+1 : i = 1, . . . , n− 1} ∪ {Ln} for so(2n + 1, C) = Bn ,
{Li − Li+1 : i = 1, . . . , n− 1} ∪ {2Ln} for sp(2n, C) = Cn ,
{Li − Li+1 : i = 1, . . . , n− 1} ∪ {Ln−1 + Ln} for so(2n, C) = Dn .

The properties [i] to [iv] have immediate consequences, which must be satisfied by root systemsR.

[v] For all α, β ∈ R, β 6= ±α, the whole string{β−pα, β−(p−1)α, . . . , β−α, β, β+α, β+2α, . . . , β+qα} ⊂
R must belong to the root system. Since we must also have thatWα(β + qα) = β − pα = (β − ηβαα) − qα, it
follows thatp = ηβα + q. This yields the restrictionp + q ≤ 3, p− q = ηβα.
[vi] For all α, β ∈ R, β 6= ±α, it follows with the help of the Killing form that

g(β, α) > 0 =⇒ α− β ∈ R ,
g(β, α) < 0 =⇒ α + β ∈ R ,
g(β, α) = 0 =⇒ α− β, α + β either both ∈ R or both 6∈ R ;

[vii] If α 6= β ∈ R+
p are simple positive roots, thenα− β 6∈ R, β − α 6∈ R cannot be roots;

[iix] If α 6= β ∈ R+
p are simple positive roots, then the anlge between them cannot be sharp, i.e.cos θ =√

g(α, α)/g(β, β)ηβα/2 ≤ 0;
[ix] The simple positive roots are linearly independent;
[x] |R+

p | = n = rankg, such that eachα ∈ R+ has a unique decompositionα = a1α1 + . . . + anαn, where
αi ∈ R+

p undai ∈ Z+.

Dynkin diagrams. Label the positive simple roots in an arbitrary manner,R+
p = {α1, . . . , αn}. It follows from [iix]

thatαi, αj ∈ R+
p can only from the anglesθ ∈ {π/2, 2π/3, 3π/4, 5π/6}. Correspondingly,ηαi,αj

takes the values
{0,−1,−2,−3}. Draw a graph with one node for eachαi, and with exactlyηαi,αj

ηαj ,αi
lines linking the nodesαi

andαj . To make it even more beautiful, draw an arrow on the linking lines from the longer root to the shorter one, if
g(αi, αi) 6= g(αj , αj). One can proove that only the connected graphs listed below correspond to irreducible root
systems which satisfy the properties [i] to [iv] (and therefore also [v] to [x]). These are theDynkin diagramsof the
semi-simple Lie algebras. This classifies all semis-simple Lie algebras! Furthermore, any irrepΓα = Γa1,a2,...,an

can be completely characterized by a Dynkin diagram by simply denoting the numberai near the nodeαi. These
coefficientsai were obtained by introducing the fundamental weightsωi with g(ωi, αj) = δij , such that obviously
ai = g(α, αi). Indeed, any irrep, i.e. its weight diagram including all multiplicities, can be reconstructed from
the Dynkin diagram of the underlying Lie algebra together with the weight coefficientsai. The Dynkin diagram
contains, for instance, all values of the so-calledCartan matrixni,j ≡ ηαi,αj . In the diagrams below, the labeling
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goes from left to right following the lists forR+
p = {α1, . . . , αn} given earlier in the text for the classical groups,

and further below for the exceptional ones.
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Finally, I make some comments regarding the restrictions concerning the minimal rank for Lie algebras in the
seriesA,B,C, D. These restrictions avoid that the same graph appears multiple times in different series.
For n = 1 we findB1 = C1 = A1, which corresponds to the isomorphiesso(3,C) ∼= sp(2, C) ∼= sl(2, C). All
these Dynkin diagrams consist of just one single node. The caseD1 = so(2, C) must be excluded, because this
Lie algebra is not semi-simple.
For n = 2 we findD2 = A1 × A1 corresponding to the isomorphyso(4, C) ∼= sl(2, C) × sl(2, C). The Dynkin
diagrams consist out of two disjunct nodes without a joining line. Further, we findC2 = B2 corresponding to the
isomorphysp(4, C) ∼= so(5, C). The associated Dynkin diagrams are equal, since the direction of the arrow on the
linking line is irrelevant in the case of just two nodes.
Forn = 3 we finally findD3 = A3 corresponding to the isomorphyso(6, C) ∼= sl(4, C).
If one wishes, one can successively eliminate nodes from right to left to formally obtain the equivalencesE5 = D5,
E4 = A4, E3 = A2 ×A1, E2 = A1 ×A1 andE1 = A1.

The root systems for the exceptional Lie algebras read as follows:

R+
p =


{L1,− 3

2L1 +
√

3
2 L2} für G2 ,

{L2 − L3, L3 − L4, L4,
1
2 (L1 − L2 − L3 − L4)} für F4 ,

{ 1
2 (L1 − L2 − L3 − L4 − L5 +

√
3L6), L1 + L2, } ∪ {Li+1 − Li : i = 1, . . . , 4} für E6 ,

{ 1
2 (L1 − L2 − . . .− L6 +

√
2L7), L1 + L2} ∪ {Li+1 − Li : i = 1, . . . , 5} für E7 ,

{ 1
2 (L1 − L2 − . . .− L7 + L8), L1 + L2} ∪ {Li+1 − Li : i = 1, . . . , 6} für E8 .
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