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THE FREUDENTHAL FORMULA

Let us consider a highest weight representationρ of a Lie algebrag, whose highest weight isΛ. Let us denote the
set of positive rootsR+. We have seen in the lecture how the weights of the irreducible representationρ can be
obtained with the help of the Dynkin lables associated toΛ and the simple positive rootsαi. Remember, that the
Dynkin labels of the simple roots are given by rows of the Cartan matrix.

What coul happen, however, is that a certain weight can be reached in various ways by applying lowering
operatorsE−αi to the highest weightΛ. The question which then arises is whether these different ways correspond
(partially) to a multiplicity of this weight or not. For example, in the case ofg = su(3), we learned that the weights
in the inner region of the convex hull spanned by the images of the highest weight under the Weyl group have a
multiplicity larger than one, increasing shell by shell until the hexagonal shell degenerates to a triangular shell,
where the multiplicitiy then stays constant. How can we answer the question of multiplicity ini general?

Fortunately, there exists an unfortunately complicated (and difficult to derive) formula to compute the mul-
tiplicities of any weightµ of a highest weight representationρ, which is calledFreudenthal’s formula. We will
demonstrate how it works at the example ofg = so(5).

so(5). This algebra is of typeB2 and thus has rank two. However, the two simple roots have differing length. Thus, the
Cartan matrix and the root diagram for the positve roots reads
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It is relatively easy to draw the weight diagram for the representation with highest weightΛ given as[1, 1] in Dynkin
labels. We leave it as an exercise to do the precise construction with the help of the master formula explicitly, and
simply give the result

Λ
[2,−1] −α2

←− [1, 1]
↘ ↘−α1

[2,−3] ←− [1,−1] ←− [0, 1] ←− [−1, 3]
↘ ↘ ↘

[1,−3] ←− [0,−1] ←− [−1, 1] ←− [−2, 3]
↘ ↘

[−1,−1] ←− [−2, 1]
The resulting diagram looks like this, where each dot is the location of a weight contained in the representation.
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Simply counting the dots, we see that this representation hasdim ρ ≥ 12, but since we do not know the multiupli-
cities of the four inner points, we cannot be sure what the exact dimension is.

Freudenthal’s formula. This is a formula which works recursive. Given a highest weightΛ, the multiplicity of any
weightµ contained in the representationρΛ is given by the following expression

mult(µ) =

∑
α∈R+

∞∑
k=1

2 mult(µ + kα) (µ + kα, α)

(Λ + µ + 2δ,Λ− µ)
.
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For better readibility, we have denoted the scalar productν ·β by (ν, β). Moreover, we intoduced the so-calledWeyl
vector, defined as2δ =

∑
α∈R+ α. Of course, as any linear combinations of positive roots, the Weyl vector has a

unique linear deocmposition into simple roots with non-negative integers,2δ =
∑rankg

i=1 kiα
i. In our example, the

positive roots areα1, α2, α1 + α2, α1 + 2α2, and hence we find2δ = 3α1 + 4α2.

Computing the multiplicity. Continuing with our example, we are interested in the multiplicity of the first inner weight
below the highest weight. By symmetry, all other inner points will have the same multiplicity. Expressed in the
simple roots, we findΛ = 3

2α1 + 2α2, and for the weightµ, chosen as just described, we findµ = 1
2α1 + α2. We

already know that2δ = 3α1 + 4α2 such that we can compute the weights appearing in the denominator easily:
Λ + µ + 2δ = 5α1 + 7α2 andΛ− µ = α1 + α2. Thus, we find

(Λ + µ + 2δ,Λ− µ) = (5α1 + 7α2, α1 + α2)
= 5(α1, α1) + 5(α1, α2) + 7(α1, α2) + 7(α2, α2)
= 5 · 2 + 12 · (−1) + 7 · 1 = 5 .

So, we have computed the denominator. To tackle the numerator, one should keep in mind that the multiplicity of
a weight not belonging toρΛ is actually zero. This ensures that the sum is always finite. Looking at our specific
example, we see that fromµ we can reach three other weights by adding positive roots.
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Fortunately, all these three weights lie on the border of the representation’s weight diagram, so they all have
multiplicity one. Thus, in the numerator, all the multiplicities are one and we have to compute the following scalar
products:

µ + α1 = 3
2α1 + α2 =⇒ ( 3

2α1 + α2, α1) = 2 ,
µ + α2 = 1

2α1 + 2α2 =⇒ ( 1
2α1 + 2α2, α2) = 3

2 ,
µ + α1 + α2 = 3

2α1 + 2α2 =⇒ ( 3
2α1 + 2α2, α1 + α2) = 3

2 .

So, Freudenthal tells us thatmult(µ) = 1
5 (2 + 3

2 + 3
2 ) · 2 = 10

5 = 2.

Weyl dimension formula. Often, one is not interested in the individual multiplicities of the weights, but only in the
overall dimension of a representationρΛ to a highest weightΛ. Then, there is a simpler way to obtain this. Let us
denote the Dynkin labels of the highest weightΛ by [Λ1,Λ2, . . . ,Λr] for a given Lie algebrag of rankr. Let us
further denote the decompositions of positive rootsα > 0 into linear combinations of simple rootsαi, i = 1, . . . r,
with non-negative integerski

α, such thatα =
∑

i ki
ααi for all α ∈ R+. Then theWeyl dimension forlumlareads

dim ρΛ =
∏

α∈R+

∑
i

ki
α(Λi + 1)(αi, αi)∑
i

ki
α(αi, αi)

.

This formula is a special case of the Weyl character formula. It is typically not too difficult to obtain all positive
roots, such that one can tabulate all theki

α, In our example, we find for the four positive roots thekα = (k1
α, k2

α) as

α1 : kα = (1, 0) , α2 : kα = (0, 1) , α1 + α2 : kα = (1, 1) , α1 + 2α2 : kα = (1, 2) .

Plugging this into the Weyl dimension formula we find a simple result for the dimension of anyso(5) highest
weight representationρΛ with Dynkin labels[Λ1,Λ2], namely

dim ρΛ =
1
6
(Λ1 + 1)(Λ2 + 1)(2Λ1 + Λ2 + 3)(Λ1 + Λ2 + 2) ,

whose derivation from the general formula we leave as an exercise. Indeed, we finddim ρ[1,1] = 16 which is
correct, since the inner four of the twelve weights all have multiplicity two. As an exercise, compute the dimension
formula for highest weight irreps ofsu(3). Note that this is also a rank two algebra, so that each irrep has again two
Dynkin labels. Finally, you can find in the same way the dimensions of the irreps of our other rank two example,
the exceptional algebraG2.
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