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SUBGROUPS

Nature has the habbit to very often realize symmetries not prefectly. Probably, this is why the universe is so
beautiful and why it would be unbearable boring otherwise. Thus, having found a large symmetry group, a good
question in physiscs is to look for its subgroups. One of the prime examples for this is the search for GUTs (grand
unified theories). These theories have a large gauge groupG nut are valid only at very high energies, e.g. at the
first few moments of the universe. Later, when the average available energie in a cooling universe decreased, this
large gauge symmetry which unifies all known fundamental forces, somehow gets broken to the direct product
U(1) × SU(2) × SU(3) ⊂ G of the gauge groups we know today. The first factor stands for the gauge theory of
electromagentism, which is an Abelian gauge theory of one gauge boson, the photon. The second factor describes
weak interactions via the intermediate vector bosonsW± andZ. Finally, the last factor represents the gauge group
of quantum chromodynamics, the strong interaction of gluons acting between the quarks. But how can we find out,
which subgroups a given Lie group contains?

Regular subalgebra. Given a simple Lie algebrag, aregular subalgebrap is a subalgebra such that the rootsα of p are
a subset of the roots ofg and the generators of the Cartan subalgebra ofp are linear combinations of the Cartan
generators ofg. A regular subalgebra is calledmaximal, if rank p = rank g. Of course, the Cartan subalgebras
are identical in this case which means that the maximal set of simultaneously commuting observables remains the
saem.

Subalgebras from Dynkin diagrams. Given a Dynkin diagram for a simple Lie algebrag, we can leave out a node
together with the lines connected to it. This inevitably will split the Dynkin diagram into two new diagrams.
These are then associated with a regular subalgebra of the original algebrag which, however, is not semi-simple.
The subalgebra has a subset of the roots of the original algebra, but we also lost one generator from the Cartan
algebra. By removing a node, the rank of the subalgebra is reduced by one, and the simple roots are a subset of
the original simple roots. On the level of the groups, we thus findG = G1 × G2 × U(1), where the additional
U(1) factor comes from the left out Cartan generator. For example,SU(n + m) can be reduced in this way into
SU(n)×SU(m)×U(1). This is the classical ansatz for a GUT:SU(5) gets broken intoSU(3)×SU(2)×U(1).

There are other regular subalgebras, which cannot be obtained by leaving out a node. These can be found
with the help of the merging procedure which we used in the lecture to prove the classification theorem. Thus,
SU(n) naturally containsSU(k), k < n, as regular subalgebras. Another nice merging yields thatSO(2n) con-
tains anSp(2n) subalgebra, by merging the branch of theDn Dynkin diagram to a double line connecting to a
(longer!) new root in theCn diagram.

Extended Dynkin daigrams. As just explained, these subalgebras all have a smaller rank than the original algebra.
There is, however, an elegant way to obtain all the semi-simple maximal regular subalgebras. Let us define the so-
calledlowest rootα0 by the property thatα0−αj is not a root for all simple rootsαj , j = 1, . . . , r = rank g. That
implies that2(α0 ·αj)/(α0)2 and2(α0 ·αj)/(αj)2 are non-positive integers for all simple rootsαj . Therefore, the
system{αj : j = 1, . . . r} ∪ {α0} of vectors satisfies all the conditions for aΠ-system (root system) except
that there is now one linear relation among the vectors. Such aΠ-system is called anextendedΠ-system, to
which belongs anextended Dynkin diagram. If we now remove a node from an extended Dynkin diagram, the
resulting corresponding set of vectors will again be linearly independet. These roots still satisfy the master formula.
However, the Dynkin diagram might be disconnected, so the root system might be decomposable. Thus, we will
obtain the simple roots of a maximal regular subalgebra of the original algebra, but this subalgebra may be semi-
simple instead of simple. It is maximal, since we now have as many nodes as the original algebra’s Dynkin diagram
had, so the ranks must be equal.

In the proof of the classification theorem, we already encountered all the root systems which satisfied all
conditions but linear independence. Thus, we already know how the lowest rootα0 then looks, and in fact, the
lowest root can be computed explicitly for all Dynkin diagrams. Thus, to each Dynkin diagram exists a unique
extended Dynkin diagram. The following table lists all the Dynkin diagram to the left together with their extended
version to the right. The extended Dynkin diagram to the Lie algebraX is denoted byX̂. The additional node
for the lowest rootα0 is explicitly indicated. Note a few exceptions:̂A1 = B̂1 = Ĉ1 cannot be extended without
introducing an additional notation, since the lowest root forsu(2) with simple rootα is simply−α. Thus, the angle
π between two roots, which so far could never appear, is denoted by a link out of four lines. Exercise: How should
D̂2 look like? Remember thatD2 = so(2)⊕so(2) is not semi-simple. Finally,̂B2 andD̂3 do not have extension as
indicated forB̂n andD̂n, respectively, since the number of nodes is too small. If we would extend in the indicated
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manner, we would be led to forbidden diagrams such as a branch directly attached to a doulbe line. The correct
extended diagrams are then given byB̂2 = Ĉ2 andD̂3 = Â3, respectively.
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Maximal subalgebras. The recipe to obtain maximal semi-simple regular subalgebras is then simple: Take theextended
Dynkin diagram and remove one node from it. The first thing one notices is thatAn = su(n + 1) does not have
any non-trivial maximal semi-simple regular sublagebras, because removing any node fromÂn just takes us back
toAn, so nothing interesting here.

The caseBn = so(2n + 1) is more interesting. Removing a node from the left end ofB̂b just gives back
Bn, but removing the node at the right end yieldsDn. So, this tells us thatSO(2n + 1) contains anSO(2n)
subgroup as maximal regular subgroup. Finally, we can remove a node somewhere from the inside to obtain
SO(2k)×SO(2n− 2k+ 1). Of course, you can continue this procedure for the factors to break this group further
down.

The caseDn = so(2n) is less interesting, since removing nodes from either end ofD̂n just gives backDn.
Removing a node from the inside simply yieldsDk⊕Dn−k corresponding to the subgroupSO(2k)×SO(2n−2k).

In a similar way, we obtain forCn = sp(2n), that removing a node from either end ofĈn simple gives
backCn. Removing any node corresponding to a shorter root from the middle simply breaksCn intoCk ⊕Cn−k.
Removing the first or last of the shorter roots yields insteadA1 ⊕ Cn−1 which is just the same sinceA1 = C1 =
su(2). Thus, the nontrivial subgroups areSp(2k)× Sp(2n− 2k).

Our special friendG2 is so small, that we easily can list all its maximal regular subalgebras. Removing the
node from the left end of̂G2 gives backG2. Deleting the node from the right end gives usA2 = su(3). Finally,
taking out the middle node givesSU(2)× SU(2).

The exceptional algebraF4 possesses aB4 subalgebra by removing the shorter root at the right end opF̂4.
Removing the other shorter root instead givesA1⊕A3. Going further to the left, the next root we could delete is a
longer root right in the middle of the diagram, which would yieldA2 ⊕A2. Removing the penultimate node to the
left we getC3 ⊕A1, and finally deleting the node at the left end just gives backF4.

GRANDE UNIFIED THEORIES

Some small remarks about GUTs. We have already seen that the broken symmetry groupSU(3) × SU(2) ×
U(1) is naturally contained inSU(5) via A4 → A2 ⊕ A1. However, if one investigates this in detail, one finds
that parity symmetry gets lost inSU(5) in a phenomenologically unsatisfactory manner. In the same way, we
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can takeB4 = so(9) and cut out the penultimate node to the right,B4 → A2 ⊕ A1. However, the relative
lengths of the roots fromA2 then differ from the ones inA1. There are other reasons whySO(9) does not make
a good gauge group for a unified theory. What happens is that the representations of the larger group do not
contain the representations of the broken direct product group in a useful manner to easily yield the low energy
particle spectrum we actually observe. This rules outC4 = sp(8) as well. However, we can takeSO(10). The Lie
algebra isD5, which can be broken intoA4 by removing one node of the branched end of its Dynkin diagram.
However, removing a node from the middle of its extended Dynkin diagram gives the phenomenological interesting
maximal subgroupSU(4) × SU(2) × SU(2) ∼= SO(6) × SO(4). Thus, we get back ourSU(5) as a subalgebra
of SO(10). Note, thatSU(5) is a maximal subgroup ofSO(10). In compairson, the maximal subgroups ofSO(9)
areSO(8) or SO(9 − 2k) × SO(2k). Unification withSO(10) works quite nicely, since theSU(4) contains a
color SU(3) subgroup. The weak interaction is given by one of theSU(2) subgroups. It turns out that together
with the otherSU(2) factor, the particle spectrum becomes completely symmetric with respect to chirality and the
weak interaction (which we know does not conserve parity!). In particular, it contains the as yet unobserved right-
handed neutrino. The problem with all such unifying theories is to find an explicit description, how the symmetry
breaking works in such a way that all the unobserved particles become extremely heavy. One can go on in this
manner and look for even larger unifying algebras. It is interesting that the chainE6 → D5 = E5 = so(10) →
A4 = E4 = su(5) works, but cannot be continued to containE7 andE8 as well, since the latter algebras do
not yield any sensible unified theories. The interesting point aboutE6 is that it contains a maximal subgroup
SU(3) × SU(3) × SU(3). This is very attractive to get a hierarchical way of symmetry breaking. First, at very
high energies, we break down to the threeSU(3) factors. At lower energies, two of the factors are further broken
down toSU(2)× U(1) which at our every-day-energies gets broken down to pure electromagnetismU(1).

Electroweak interactionSU(2)× U(1). One major motivation to search for unifying gauge groups is the problem of
charge quantization. Electromagentism is aU(1) gauge theory. THe problem is thatU(1) does not yield a disrcrete
spectrum of quantum numbers. In principle, any valueq for the charge of a particle is possible. Furthermore, the
U(1) factor in the standard modell commutes with the other gauge groups, the colorSU(3) and theSU(2). If this
direct product of gauge groups were a subgroup of a simple Lie group, then all its representations had to fit into the
representations of this larger group. But simple Lie groups have the wonderful property that the weights of all the
states of any representation are quantized according to the discrete points on the weight lattice. And these weights
are the quantum numbers of the states with respect to the maximal set of commuting observables, the Cartan
algebra. So, unifying with a simple Lie algebra would enforce that charge had to be quantized as well. This would
then solve the puzzle that the charges of the leptons and the charges of the quarks are so closely related to each
other, although they belong to completely different representations with respect toSU(2) × U(1). We conlcude
this handout with a very brief tour through the concept of unification, where we takeSU(5) as an example.

The Glashow-Salam-Weinberg model of electroweak interaction usesSU(2) × U(1) as unifying gauge
theory. If we restrict ourselves to one generation of particles, this theory contains the following seven right-handed
particles (note that all particles are assumed to be massless so that helicity is a relativistically conserved quantity,
the handedness):u, d, e−, ū, d̄, e+, ν̄e. There is no right-handed neutrino due to the paritiy-violating nature of the
weak interaction. To ease notation, we will denote the electron bye, the positron bȳe and the electron anti-neutrino
by ν̄. Since color commutes with the electroweak interaction, we don’t have to bother with color indices for the
quarks yet. Under the electroweak interaction,(ē, ν̄) transform as a doublet, i.e. in a spin1/2 representation.
Thus, the corresponding creation operators for these particles, denotesp† for particlep, can be arranged as the
components of an irreducible tensor with respect toSU(2), such as̄̀ †1 = ē† and ¯̀†

2 = ν̄†. The same is true for
the (d̄, ū) anti-quarks, which we can collect as̄ψ†1 = d̄† andψ̄†2 = ū†. Let us denote the generators ofSU(2) by
Xa, and the generator of theU(1) by S. One finds the following commutation relations betweent the gauge group
generators and the particle creation operators:

[Xa, u†] = 0, [Xa, d†] = 0, [Xa, e†] = 0, [Xa, ψ̄†j ] = + 1
2 ψ̄
†
k(σa)kj , [Xa, ¯̀†

j ] = + 1
2

¯̀†
k(σa)kj ,

[S, u†] = + 2
3u
†, [S, d†] = − 1

3d
†, [S, e†] = −e†, [S, ψ̄†j ] = − 1

6 ψ̄
†
j , [S, ¯̀†

j ] = + 1
2

¯̀†
j .

Thus, all the particles transform as tensors, either as singlets or as doublets. The annihilation operators for the right-
handed particles are given by the adjoints of their creation operators. Therefore, they transform in the complex
conjugate representation, such that, in particular, allS eigenvalues change sign. The creation operators of the left-
handed particles transform exactly as the annihilation operators of their right-handed anti-particles. Furthermore,
the operator for the electric charge is given byQ = X3 + S such that

[Q, u†] = +
2
3
u†, [Q, d†] = −1

3
d†, [Q, e†] = −e†, [Q, ū†] = −2

3
ū†, [Q, d̄†] = +

1
3
d̄†, [Q, ν̄†] = 0.

The idea of any gauge theory is now that the generators (i.e. the particles from the adjoint representation of the
gauge group’s Lie algebra) are associated with the force particles. Thus, the threeXa generators are the three
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intermediate vector bosonsW a, and the generatorS is often denotedX in the electroweak model. Only one linear
combination, namelyW 3 +X = Q, remains a massless force particle, namely the photon, the other particles, the
W± = W 1 ± iW 2 andZ = W 3 − X are responsible for the weak interaction. These latter three aquire heavy
masses due to the Higgs mechanism which also breaks theSU(2) × U(1) model down to the embeddedU(1)
symmetry of electromagentism. This meachnism then also manages to make the weak interaction short ranged due
to the masses of its gauge bosons. The mass for the gauge bosons is not the only thing the Higgs mechanism is
needed for. Without it, the electron and the quarks would be massless as well, since only for massless particles is
a parity violating interaction consistent with relativity. What the Higgs mechanism does is essentially to create a
vacuum state of the theory which is non-trivial, i.e. not just a singlet ofSU(2) × U(1). Only theU(1) symmetry
viaQ is left by thisspontaneous symmetry breaking, under which the vacuum state is a singlet.

Higgs mechanism.We will sketch the Higgs mechanism very briefly here. Suppose that there exists an additionalscalar
and Lorentz-invariant field. Such a field can have a non-zero expectation value in the vacuum state without breaking
Lorentz-invariance. If this field now transforms non-trivially underSU(2)×U(1), a non-zero vacuum expectation
value leads to spontaneous symmetry breaking. In fact, a Higgs fieldφ transforming as a doublet underSU(2) and
with S = 1

2 does the trick,

[Xa, φ†j ] = +
1
2
φ†k(σa)kj , [S, φ†j ] = +

1
2
φ†j .

If such a field exists, it may interact with itself. This interaction can be described by a potentialV (φ), which simply
is the energy stored in a constantφ field. The potential should be invariant underSU(2)×U(1) in order to construct
a physical vacuum state, soV (φ) is actually a function ofφ†φ only. The lowest energy state corresponds to the
minimum value ofV (φ). It can now happen, e.g. forV (φ) = λ(φ†φ − v)2, that the minimum ofV is exhibited
not forφ = 0, but for 〈φ†φ〉 = v2 for λ > 0. We could thus take the vacuum expectation value ofφ as〈φ1〉 = 0,
〈φ2〉 = v. This choice implies that[Q,φ]|〈φ†φ〉=v2 = 0 such that the particular subgroup ofSU(2) × U(1)
associated to electromagnetism (generated byQ = X2 + S) is not broken by the Higgs field. However, any
other linear combination of generators ofSU(2) × U(1), acting onφ, yields a non-zero result. This means that
these generators are all spontaneously broken and correspond to transformation of the physical vacuum state to an
unphysical one. The precise form of the unbroken part of the symmetry depends on our choice forφ, but any other
choice satisfying〈φ†φ〉 = v2 yields the same physics, since it is related via anSU(2) × U(1) transfromation to
our initial choice. The matter particles (electron and quarks) get mass from the Higgs as well. The rule of thumb is
that a Higgs field can produce mass for a spin1/2 particle if the tensor product of the representation of the right-
handed particle with the representation of the corresponding anti-particle contains the representation of the Higgs
field (or its complex conjugate). In quantum field theory, this rule of thumb implies that anSU(3)×SU(2)×U(1)
invariant action can be written down, which involves the Higgs field as well as all particle creation and annihilation
operators, that becomes a pure mass term when the Higgs field is replaced by its vacuum expectation value.

Example: Unifying with SU(5). Let us finally turn to the question of unification. TheSU(2) × U(1) symmetry for
the electroweak interaction is a partial unification of the weak and electromagnetic interactions. A search for full
unification of this theory within a simple Lie group failed until the strong interaction of color was incorporated
as well via anSU(3) gauge theory – quantum chromodynamics – whose generators we denote byT a. A particle
creation operatora†rj transforms according to a representation(ρ, %)s of SU(3)× SU(2)× U(1), if it satisfies

[T a, a†rj ] = a†sj(ρ(T a))sr, [Xa, a†rj ] = a†rk(%(Xa))kj , [S, a†rj ] = s a†rj .

Thus,r is a colorSU(3) index associated with theSU(3) representationρ, andj is anSU(2) index associated
with theSU(2) representation%. Our choiceQ = X3 + S implies thats is simply the averaged electromagnetic
charge of the full representation, sincetrQ = trX3 + trS = trS, because the trace of eachSU(2) generator
vanishes (the quantum numbers ofSU(2) are symmetric with respect to the origin). Denoting the representations
ρ and% by theor respective dimensions, we identify the particle creation operators for the right-handed ones as
members of the representations

u† : (3,1)+ 2
3
, d† : (3,1)− 1

3
, e† : (1,1)−1, ψ̄

† : (3̄,2)− 1
6
, ¯̀† : (1,2)+ 1

2
.

Thus, the fullSU(3)×SU(2)×U(1) representation, in which the right-handed particle’s creation operators reside,
together with the one for the left-handed fields are thus

(3,1)+ 2
3
⊕ (3,1)− 1

3
⊕ (1,1)−1⊕ (3̄,2)− 1

6
⊕ (1,2)+ 1

2
, (3̄,1)+ 2

3
⊕ (3̄,1)− 1

3
⊕ (1,1)−1⊕ (3,2)− 1

6
⊕ (1,2)+ 1

2
.

The latter is the complex conjugate of the former, where we made use of the fact that the singlets are always real
representations, as is theSU(2) double representation,2̄ = 2. The two representations above are not the same, so
the representation is complex, which stems from the parity violating nature of the electroweak interaction.
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To find a unifying theory, we have to find a gauge groupG which containsSU(3) × SU(2) × U(1)
as a subgroup, and which possesses a representation which transforms under this subgroup precisely as given
above. The rank ofG must be at least four such that it can containT 3, T 8, X3 andS in its Cartan algebra. The
simplest possibility is indeed the rank four groupSU(5). In fact, the other simple rank four groups do not work,
because they do not have complex representations. The algebrasu(5) has two five-dimensional representations5
and 5̄, which are the fundamental representations(1, 0, 0, 0) = [1] and (0, 0, 0, 1) = [4], respectively (for this
notation, see the seminar on Young tableaux). Since5 is complex, these two are not equivalent. There exists an
SU(2)×U(1) subgroup ofSU(5) such that the5 transforms as a five dimensinal subset of the creation operators,
namely(3,1)− 1

3
⊕ (1,2)+ 1

2
. The other five-dimensional subset(3,1)+ 2

3
⊕ (1,2)+ 1

2
cannot work, since the

generatorS is not realized traceless on it. This implies thatS cannot be a generator ofSU(5) at all. It is indeed
possible to embedSU(3)× SU(2)× U(1) in SU(5) to obtain the above five-dimensional representation, namely
by taking theSU(3) generators to be traceless matrices acting on the first three indices in the5,

(
Ta 0
0 0

)
, and by

taking theSU(2) generators to be traceless matrices acting on the last two indices,
(

0 0
0 Xa

)
. ThenS is the generator

that commutes with both of these, given bydiag(− 1
3 ,−

1
3 ,−

1
3 ,

1
2 ,

1
2 ). Thus, we can collect thed† and ¯̀† creation

operators into anSU(5) 5 representationλ†j as follows:

λ†j = d†j for j = 1, 2, 3 , λ†4 = ¯̀†
1 = ē† , λ†5 = ¯̀†

2 = ν̄† .

We are left with(3,1)+ 2
3
⊕(1,1)−1⊕(3̄,2)− 1

6
. This representation is ten-dimensional. Fortunately, the other two

fundamental representations ofSU(5) are ten-dimensional,10 = (0, 1, 0, 0) = [2] and10 = (0, 0, 1, 0) = [3]. In
fact,10 = 5∧5 is an anti-symmetric tensor product of two5 representations, which we could use to identify how
it transforms underSU(3) × SU(2) × U(1). TheSU(3) andSU(2) representations decompose as discussed in
the seminar, theS quantum numbers simply add:[

(3,1)− 1
3
⊕ (1,2)+ 1

2

]
∧
[
(3,1)− 1

3
⊕ (1,2)+ 1

2

]
=
[
(3̄,1)− 2

3
⊕ (1,1)+1 ⊕ (3,2)+ 1

6

]
.

This is the complex conjugate of our proposal, so we actually want the10 of SU(5). We can fill in the remaining
right-handed fermion creation operators in thisSU(5) representation, anti-symmetric in two upper indices (since
we used lower indices so far),

ξab† = εabcu†c , ξ
a4† = ψ̄a†2 = ūa† , ξa5† = ψ̄a†1 = d̄a† , ξ45† = e† .

where the indicesa, b, c ∈ {1, 2, 3} and whereξjk† = −ξkj†. This is the standardSU(5) unified model, where
the creation operators for all right-handed particles transform in the representation5⊕ 10. Of course, the creation
operators for the left-handed partilces transform then in the complex conjugate representation5⊕10. As one sees,
it is quite a non-trivial thing that the content of the representations fits so nicely with the observed particles.

Consequences.Having identified a potential candidate unifying theory, the next step is to explain how it is acutally
broken down to the symmetry we observe nowadays. The Higgs mechanism can do this for us, and there is one
particular simple solution for this. One can show that in the adjoint representation, the24, theS generator has
just the properties of the vacuum expectation value of the Higgs field. That is similar to the so-called hypercharge
generator in the adjoint representation ofSU(3), which commutes with isospin. TheU(1) generatorsS in SU(5)
commutes with all the generators of theSU(3)×SU(2)×U(1) subgroup. Thus, taking the adjoint representation
24 with a vacuum expectation value for the Higgs in the direction ofS (there are physically inequivalent directions
for the vacuum expectation value of the Higgs field inSU(5), and one can show that the direction ofS is an
admissible value) indeed leads to the desired symmetry breaking. Next, the Higgs field should also be responsible
to give the leptons and the quarks their masses. This can happen, if the Higgs couples to the fermions. In turn,
this can be the case when its representation (or its complex conjugate) appears in the tensor product of theSU(5)
representations of the fermion in question and its anti-particle, respectively. Furthermore, the Higgs representation
must have a component that transforms underSU(3) × SU(2) × U(1) like the Higgs field of this model (or its
complex onjugate).

Now, the right-handed positron̄e and thed quark reside in the5, while their anti-particles, the electrone
and thed̄ quark, live in the10. As an exercise, perform the Clebsh-Gordan decomposition of5 ⊗ 10 in SU(5),
which gives5⊕45. Using the Young notation, this is[1]× [3] = [4]⊕ [3, 1]. The hard work is to show that the two
irreps on the right hand side do indeed contain components with respect toSU(3)×SU(2)×U(1) with the correct
properties to represent the Higgs field. The5, for example, contains the(1,2)+ 1

2
. The theory has now a chance

to produce a mass term for the electron and thed quark, since the action can contain a term involving the Higgs
field and the particle creation and annihilation operators. This argument is in complete analogy to our study of
the dipol matrix elements for electrons in crystals with octahedral symmetry, where we asked for the irreps which
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couple via the dipol operator. These were just these with non-vanishing matrix elements. A necessary condition
for a matrix element to be non-vanishing is that the involved three irreps (for the bra- and ket-state as well as the
operator) are linked togehter by a tensor product of two of them yielding the third. Here, the mass for the electron
andd quark can arise from both, the5 or the45. The right-handedu quark and its anti-partilcēu both reside in
the10. Now, [3] ⊗ [3] = [1] ⊕ [4, 2] ⊕ [3, 3] = 5 ⊕ 45 ⊕ 50. It turns out that the last irrep, the50 does not give
rise to a mass term from the Higgs field, since it does not contain a component transforming like(1,2)± 1

2
under

SU(3)× SU(2)× U(1).

Another consequence worth mentioning of unified theories is that certain particles can decay which are
stable in the broken theory. The prime example of this isproton decay. The point is that in theSU(5) theory, all
the quarks, anti-quarks and the electron appear in the same irrep. Thus,SU(5) admits interactions which do not
conserve baryon number. It can happen, when two quarks in a proton interact with each other via the Higgs field.
If the vacuum expectation value of the Higgs is very large (as it presumably is, since the Higgs seems to be a very
heavy particle not yet identified in accelerators), the interaction is extremely short ranged and the decay probability
is very small. One can actually predict on theoretical grounds and the experimentally observed differences between
the colorSU(3), the electroweakSU(2) and theU(1) forces, how large the vacuum expectation value of the Higgs
field should be, and derive from it an average proton live time. Experiments are conducted to look for decaying
protons. None were observed so far which pushed the current value of the averag proton live time beyond anything
one could realize with a standardSU(5) unified theory, which therefore has to be considered as ruled out. Thus,
theorists are looking for other Lie group candidates for unifying theories, or try completely new concepts such as
supersymmetry. In fact, supersymmetricSU(5), SO(10) or E6 models are still very hot candidates for unifying
theories. One beautiful side effect of supersymmetry is that the energy scales, where unification actually takes
place, becomes the same for strong and electroweak interaction. However, this alone is no proof of the existence
of supersymmetry, although it is highly suggestive.

There are many interesting questions to ask, and there are many things left unexplained here, since they
would require a detailed study of the fundamental and adjoint representations (at least!) of the mentioned algebras
in order to find the particle spectrum. Most difficult is always the question how the symmetry breaking actually
takes place, and where the particles do get their mass from, as sketched for theSU(5) case. The latter question
can only partially be answered by the Higgs mechanism. Unification would solve other problems which need
explanation, such as the origin of charge quantization. This is, by the way, one of the reasons whySO(10) looks
promising, since its maximal subgroupSU(4)×SU(2)×SU(2) is the smallest semi-simple Lie group containing
SU(3)×SU(2)×U(1). Breaking symmetry this way would yields charge qunatization for free. The reader might
now have reached a point where she can appretiate the beauty and the power of symmetries (and their imperfect
realization!) in physics. Next term, the lecture course on theoretical elementary particle physics of Prof. Nilles
should put these symmetries to use in order to epxlain from which elementary particles and fundametal forces
our world is made of. And my own lectures on supersymmetry will introduce an additional and theoretically very
appealing concept of symmetry into physics. So, please stay tuned.
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