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FINITE GROUPS

Groups with a finite number of elements are calliite groups The number of elements of a finite groGpis
called theorder of the groupGG. We will collect some basic facts about them, which will be useful for the study of
Lie algebras. Moreover, we see how everything works by doing some examples.

Example Z3. Write down the multiplication table for the groufs. Is this group Abelian? Why does each element
of G appear exactly once in each row and each column of the multicplication table? Find a one-dimensional
representation df.3.

Regular representation. The regular representatigrn; of a finte groupG is the representation of the group on itself.
Now, representations of groups act linearly on vector spaces. Where does the vector space come into play? The
trick goes as follows: We construgt by the mapg — |g) for all g € G and declare the vectots) to form an
orthonormal base df, i.e.V = span{|g) : g € G} with (g|g’) = 0,4, . Of coursedimV = orderG. Theregular
representatioris now defined byr(¢')|g) = |¢’g). Check that this definition actually yields a representation.
What ispg, for the groupZs ?

Matrix elements. Given a representatiop of a groupG on a vector spac& with orthonormal basd|i) : i =
1,...,dimV} with (i|j) = 6;;, the matrix elements of the linear operatp(g) are given bY(p(g)):; = (¢|p(9)|J)
for all ¢ € G. Check that the representatiopimplements the group multiplication by matrix multiplication.

Irreducible representations. Since representations live on vector spaces, we have linearity. This means that we are free
to choose the base in our vector space. Two representati@msl p are said to bequivalent representations
there exists a similarity transformatishsuch that’(g) = S~1p(g)S for all g € G. Check that the multiplication
rule is not changed by a similarity transformation.

A representation is said to be ainitary representationif p(g)f = p~1(g) = p(¢~ ) forallg € G. A
representatiop on a vector spac#” is called areducible representatigrif there exists annvariant subsapce
W C V such thap(g)w € W for all ¢ € G and for allw € W. Then, there exists a project; onto W such
thatIly p(g)IIyw = p(g)Ilw for all ¢ € G. Find an invariant subspace of the regular representati@n .of

The representation defined by.;,(g) = 1 for all ¢ € G is called thetrivial representation It is one-
dimensional. Every grou@ has a trivial representation.

A representatiop on a vector spack is calledirreducible if it is not reducible. Irreducible representations
are often simply calledtreps. Give an argument when a representation is completely reducible. This means that
V=VaoV,d... dV,with p splitting into irreducible representatiops acting onV;. Thus, one equivalently
says that a representation is completely reducible, if it can be decomposed into a direct sums of irreducible re-
presentations. Decompogg of Zs by noting that all matrices can be simultaneously diagonalized, &pds
Abelian.

Example S3. . A slightly more complicated and non-Abelian group is the symmetric group or permutation gyaup
three elements. The order 6 is |S5| = 3! = 6. Its elements are

e= (1), a; = (123), ay = (321) =a;', a3 =(12), a, = (23), a5 = (31).

The notation of the group elements is in cylces, where. . i;) means the permutatio( gg;zﬁﬁ) Give
the full multiplication table ofS;. Can you identify an Abelian subgroup 6§ ?

Here is an example of a unitary representation. Why must a non-Abelian group possess representations of
dimension larger than one?

po= (") we=3( ) se-3( 5 ).
p(a:s’):(_l 1>7 P(a4)=;(\/% \?)7 0(04)2;(\/% _\?)

Do you see a relationship betweén a1, as} and{as, ay, a5} respectively?



Theorem 1. Every rep. of a finite group is equivalent to a unitary rep.
Proof: We use an extremely powerful trick, namely averaging over all group elements. Let us define

S=Y " p(9)nlg),

geG

which is clearly a Hermitean positive definite operators. Tifusan be diagonalizedi = U~'DU with D =
diag(A1, Ag,...), and all its eigenvalues; > 0. Why do we actually have the stronger result that> 0 for all
i? Thus,S has a square root = S'/2 = U~ D'/2U with D'/? = diag(v/A1, V2, ...). Since all\; > 0, X is
invertible. Thus, the representatiph= X pX ~! is unitary. Check this statement by computpi¢y)’p’(g).

Theorem 2. Every rep. of a finite group is completely reducible.
Proof: Due to theorem 1, we only have to check this for unitary reps. Now, either the rep. is an irrep, then we
are done. Or, the rep. is reducible. Thus, there exists a projHctuch thatllp(g)II = p(g)I for all g € G.
Sincell’ = II, we have(Ilp(g)II)! = Ip'(g)II = Ipf(g). Now, p is unitary by assumption, so this implies
Mp(g~HII = Ip(g~?) for all g € G. Since this is true for al, this is equivalent to the statemeip(g)I1 =
IIp(g) for all g € G. Use this last relation to computd — II)p(g) (1l — IT). What property doeéll — IT) therefore
possess? Complete the proof from there.

Subgroups and CosetsWe have seen th&; is asubgroupof Ss. Of course, there are always the trivial subgroups
{e} andG for any groupG. Let H C G be a non-trivial subgroup aff. Then we can define théght-cosetof
H, which is the sef g for a fixed group element € G. Of course, one can analogously define left-cogéfs
In the following, a coset means a right-coset. Check {hat a4, a5} is a right-coset oZ; in S5. The number of
elements of the coset is the order of the subgroup|/ilg| = orderH.

Every elemeny of G belongs to exactly one coset of a given subgrélgt follows, that for finite groups
G, the order ofH must be a factor or divisor of the order Gf

A subgroupH of G is calledinvariant or normal, if gH = Hg for all ¢ € G. This notation means more
precisely the following¥ g € G,hy € H : 3hy € H : h1g = ghy Or ghog™! = hy. Is Z3 a normal subgoup of
Ss ? What about the subgroyp, a4} of S5 ?

If H is an invariant subgroup @, the so-calleadtoset spacé:/H is again a group. The multiplication law
on G implies the multiplication law oiz/ H. Check this. The groufy/H is called thefactor groupof G by H.
What iSSg/Zg ?

Thecenterof G is the always Abelian inavriant subgroup@fdefined byC(G) = {c € G:cg =gcV g €
G}. Note, however, that'(G) might well be trivial.

Invariant subgroups were defined via the relatidhg—! = H for all ¢ € G. In a similar fashion, we can
defined invariant subsets by the relationg='Sg = S for all g € G. Such invariant sets are callednjugacy
classesThey do not necessarily form groups. Find the conjugacy classgs tfwill turn out that the conjugacy
classes of a finte grouf are in one-to-one correspondence with the irrep& ofloreover, every subgroufl’ of
G, which is a union of conjugcy classes, is an invariant subgroup.

Theorem 3. If p1(g)A = Apa(g) for all g € G, wherep; andp, are inequivalent irreps, thefh = 0.
Proof: If there is a vectofu) with |u) = 0, then there exists a non-zero projectbionto the subspace that is
annihilated byA. This subspace is invariant under becausedp,(g)IT = p; ATl = 0 for all g € G. But since
p2 is an irrep,IT mus project onto the whole space afdnust vanish. IfA annihilates one state, it annihilates all
states. In a similar fashion, one shows the analogous statement, if there i&é Wwith (v|A = 0. If no state is
annihilated byA to either sideA must be an invertible square matrix. But theim,! p; (g) A = p2(g) forallg € G
which simply says that; andp- are equivalent reps. contradicting the assumption.

Theorem 4. If p(g)A = Ap(g) for all g € G, wherep is a finite-dimensional irrep, thes o 1.
Remark:In the proof of the this theorem, the assumption that the representation is finite dimensional is curcial.
Both these theorems form what is known&shur's LemmaOf course, theorem 4 is valid for the case where
is equivalent tgs. Due to a simple base change, we can then always manage tphaves, as assumed in the
theorem. An important side effect of the theorem is that the form of the basis states of an irrep is essentially fixed.
One sees this be rewriting theorem 4 in the fotm e G : A~'p(g9)A = p(9) = A  1l. Thus, once the form
of p is fixed, there are no non-trivial similarity transformations anymore. The only unitary transformations we still
can make is to multiply all states by the same phase factor.
Proof: We use the fact that is finite-dimensional, because we use the fact that any finite-dimensional atrix
has at least one eigenvalue. Indeed, the characteristic eqdatioh— A1) = 0 has at least one root. Lgt) be an
eigenvector to this one eigenvalue. We then hayg(A— A1) = (A—A1l)p(g) forall g € G and(A—\1)|u) = 0.
We can then apply the argument of the proof of theorem 3 to the matrix A1) to conclude thatA — All) = 0.



Orthogonality relations. Irreps have some very remarkable properties. Since irreps are more or less uniquely determi-
ned, we can introduce a labelfor inequivalent irreps. Thuse, ) is thei-th state of an orhtonormal basis in the
vector spacé/, of the irrepp,,, wherep,, is chosen unitary and in a canonical form, i.e. all occurences, ¢f)
shall be represented by the same matrix. Let us define the quantities

A% =" palg™la, 1)(B. Klps(g)

geG

Note, that again we average over the whole group. Check the intertwining property

palg) AL = A% palg)) |

which holds for allg’ € G. Now, Schur's Lemma tells us immediately the following:df # 3, thenp,, is
inequivalent topg and thusA = 0. If o = 3, however,A « 1. Thus, we findAjf = JapAf;, 1L Let us determine

the constants; . For this, we compute the trace Aﬁf on the Hilbert space in two ways:
A% = aptr(A% 1) = apAStrll = 605 A% 0
with n, = dimp, = dimV,,. Now we compute the trace again, but pluging in the definition ofAﬁﬁ first:

tI‘Aa]f =tr Z pa |Oé ]><B k|PB = 6&6 Z @ k‘pa a 1)|a7j> = Naaﬁ(sjk
Se geq

with N = orderG. In order to derive this, we have used the cyclic property of the trace. Thus, we arrive at
S =0k, Y palg Dl ) (B, klps(g) = *5aﬂ5jk11-
geG Na

If we multiply the last result in such a way that we get matrix elements, we find the remarkable formula

¥ S ianls™ 0K ) = 3 " (g ™), (a9
= Z % (pa(g))jz (pﬁ(g)) - 60455_71g51m .
g€eG

Note, that we have used unitarity here. What this formula tells is that the normalized matrix elements

\/?(pa(g))ij

of inequivlanet unitary irreps are orthonormal functions of the group elements. Moreover, the matrix elements
are not only orthonormal and thus linearly independent, but they form a complete set of functions of the group
elements. Leff(g) be an arbitrary function of group elemegts G. Defining f(g) = (f|g) = (flpr(g)|e) with

the help of the regular representation and(f| = >_ .o f(¢9')(¢'|, we find

= > Hd)N lpr9)le) = > f(g) (pr9)),
g'eG g'eG

Sincepy is completely reducible, it can be decomposed into a linear combination of matrix elements of the unitary
irreps. Thus, we have proven:

Theorem 5. The matrix elements of the unitary irreps@fare a complete orthonormal set for the vector space of the
regular representation, or alternatively, for functions of the group elements’.

A very important corollary of all this stuff, in particular of the orthogonality relation, is the small formula
N = Z ni .
(03

Since then, > 1, we see that a finite group admits only a finite number of inequivalent unitary irreps.



Characters. Given a repp of G on a vector spac®, we have matrix element®(g)):; = (¢|p(g)|j). With this, one
can define a functiony, : G — C by taking the trace of the matrixg), i.e.

Xp(9) = trvplg) = D (ilp(g)li) = Y (p(9))ii -

7 %

This function is called theharacterof the representatiop. Note, that this time we sum over the base of the
representation space, not over the group elements. It follows from the cyclic property of the trace that characters
of equivalent reps. are identical. Moreovey, # x,, forinequivalent repsp,, andpg. In fact, the characters are
orthonormal. To see this, start from the formula

> 5 (9 (950D = 5 -Basidin

geqG

which we have shown above, and sum oyef k£ and! = m in order to take the trace. This yields

pra X (9) = Bap - (+)

gGG
Why are characters constant on conjugacy classes? Compute the character for the two-dimensional representation
of S5 given above. What doeg, (e) tell you?

One can show that the characters form a complete orthonormal basis for functions which are constant on
conjugacy classes. This means in particular, that there are precisley as many inequivalent unitary irreps as there are
conjugacy classes. To show this, recall that any such function can be expanded in terms of the matrix elements of

the irreps,
Z O pa 91

a,j,k
Sincef shall be constant on conjugacy classes, we can write it as

Zf (9" 919) Z C5 (Palg ™ g19)) Z O (Palg™) ;1 (Pa91)) 1 (Pa(9)) i, -

!IGG 97 a,j,k g,k
g,l.m

In this last formula, we can perform the sum over the group elements explicitly making use of the orthogonality
relation. We therefore find

1 1 1
flg)=> —C5k (Pa(91)) i Ijibim = > —Cj (Pal9))u = > —C5iXpa91) -

g,k a,j,l a,j
1m

Let us label the conjugacy classesdsnd letk. be the number of elements of the conjugacy clastet us define
further a matrix)/ with matrix elements
ke
Meo =\ 350 ().

The orthonormality relatioi) can then be written a&/ "M = 1. But M is a square matrix, since the number of
inequivalent unitary irreps is equal to the number of conjugacy classes. Thus, we alsd have- 11, or

. N
ZX/)Q (gc) Xpa (gc’) = k*(scc/ .

C

This all has some interesting consequencesplbet any rep. (not necessarily irreducible). In its completely
reduced form, each irrep will occur an integer number of times, > 0, called themultiplicity of p, in p =
@D, mapa. We have from the orthogonality relation that

1 *
N D X (9)Xp(9) = Ma -
geG

Compute the character of the regular representation. What follows for the decomposition of the regular rep. into
irreps? Play around with the characters of some representaticiis of



