
Seminar I & II for the course GROUPTHEORY IN PHYSICS Mic~ael Flohr
Basics on Finite Groups 26. October & 2. November 2004

FINITE GROUPS

Groups with a finite number of elements are calledfinite groups. The number of elements of a finite groupG is
called theorder of the groupG. We will collect some basic facts about them, which will be useful for the study of
Lie algebras. Moreover, we see how everything works by doing some examples.

ExampleZ3. Write down the multiplication table for the groupZ3. Is this group Abelian? Why does each element
of G appear exactly once in each row and each column of the multicplication table? Find a one-dimensional
representation ofZ3.

Regular representation. The regular representationρR of a finte groupG is the representation of the group on itself.
Now, representations of groups act linearly on vector spaces. Where does the vector space come into play? The
trick goes as follows: We constructV by the mapg 7→ |g〉 for all g ∈ G and declare the vectors|g〉 to form an
orthonormal base ofV , i.e.V = span{|g〉 : g ∈ G} with 〈g|g′〉 = δgg′ . Of course,dimV = orderG. Theregular
representationis now defined byρR(g′)|g〉 = |g′g〉. Check that this definition actually yields a representation.
What isρR for the groupZ3 ?

Matrix elements. Given a representationρ of a groupG on a vector spaceV with orthonormal base{|i〉 : i =
1, . . . ,dimV } with 〈i|j〉 = δij , the matrix elements of the linear operatorsρ(g) are given by(ρ(g))ij = 〈i|ρ(g)|j〉
for all g ∈ G. Check that the representationoρ implements the group multiplication by matrix multiplication.

Irreducible representations. Since representations live on vector spaces, we have linearity. This means that we are free
to choose the base in our vector space. Two representationsρ′ andρ are said to beequivalent representations, if
there exists a similarity transformationS such thatρ′(g) = S−1ρ(g)S for all g ∈ G. Check that the multiplication
rule is not changed by a similarity transformation.

A representationρ is said to be aunitary representation, if ρ(g)† = ρ−1(g) = ρ(g−1) for all g ∈ G. A
representationρ on a vector spaceV is called areducible representation, if there exists aninvariant subsapce
W ⊂ V such thatρ(g)w ∈ W for all g ∈ G and for allw ∈ W . Then, there exists a projectorΠW ontoW such
thatΠW ρ(g)ΠW = ρ(g)ΠW for all g ∈ G. Find an invariant subspace of the regular representation ofZ3.

The representation defined byρtriv(g) = 1 for all g ∈ G is called thetrivial representation. It is one-
dimensional. Every groupG has a trivial representation.

A representationρ on a vector spaceV is calledirreducible, if it is not reducible. Irreducible representations
are often simply calledirreps. Give an argument when a representation is completely reducible. This means that
V = V1 ⊕ V2 ⊕ . . . ⊕ Vk with ρ splitting into irreducible representationsρi acting onVi. Thus, one equivalently
says that a representation is completely reducible, if it can be decomposed into a direct sums of irreducible re-
presentations. DecomposeρR of Z3 by noting that all matrices can be simultaneously diagonalized, sinceZ3 is
Abelian.

ExampleS3. . A slightly more complicated and non-Abelian group is the symmetric group or permutation groupS3 on
three elements. The order ofS3 is |S3| = 3! = 6. Its elements are

e = (1) , a1 = (123) , a2 = (321) = a−1
1 , a3 = (12) , a4 = (23) , a5 = (31) .

The notation of the group elements is in cylces, where(i1 . . . ik) means the permutation
(
12...i1...i2...ik...n
12...i2...i3...i1...n

)
. Give

the full multiplication table ofS3. Can you identify an Abelian subgroup ofS3 ?

Here is an example of a unitary representation. Why must a non-Abelian group possess representations of
dimension larger than one?

ρ(e) =
(

1
1

)
, ρ(a1) =

1
2

(
−1 −

√
3√

3 −1

)
, ρ(a2) =

1
2

(
−1

√
3

−
√

3 −1

)
,

ρ(a3) =
(
−1

1

)
, ρ(a4) =

1
2

(
1

√
3√

3 −1

)
, ρ(a4) =

1
2

(
1 −

√
3

−
√

3 −1

)
.

Do you see a relationship between{e, a1, a2} and{a3, a4, a5} respectively?
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Theorem 1. Every rep. of a finite group is equivalent to a unitary rep.
Proof: We use an extremely powerful trick, namely averaging over all group elements. Let us define

S =
∑
g∈G

ρ(g)†ρ(g) ,

which is clearly a Hermitean positive definite operators. Thus,S can be diagonalized,S = U−1DU with D =
diag(λ1, λ2, . . .), and all its eigenvaluesλi ≥ 0. Why do we actually have the stronger result thatλi > 0 for all
i ? Thus,S has a square rootX = S1/2 = U−1D1/2U with D1/2 = diag(

√
λ1,

√
λ2, . . .). Since allλi > 0, X is

invertible. Thus, the representationρ′ = XρX−1 is unitary. Check this statement by computingρ′(g)†ρ′(g).

Theorem 2. Every rep. of a finite group is completely reducible.
Proof: Due to theorem 1, we only have to check this for unitary reps. Now, either the rep. is an irrep, then we
are done. Or, the rep. is reducible. Thus, there exists a projectorΠ such thatΠρ(g)Π = ρ(g)Π for all g ∈ G.
SinceΠ† = Π, we have(Πρ(g)Π)† = Πρ†(g)Π = Πρ†(g). Now, ρ is unitary by assumption, so this implies
Πρ(g−1)Π = Πρ(g−1) for all g ∈ G. Since this is true for allg, this is equivalent to the statementΠρ(g)Π =
Πρ(g) for all g ∈ G. Use this last relation to compute(1l−Π)ρ(g)(1l−Π). What property does(1l−Π) therefore
possess? Complete the proof from there.

Subgroups and Cosets.We have seen thatZ3 is a subgroupof S3. Of course, there are always the trivial subgroups
{e} andG for any groupG. Let H ⊂ G be a non-trivial subgroup ofG. Then we can define theright-cosetof
H, which is the setHg for a fixed group elementg ∈ G. Of course, one can analogously define left-cosetsgH.
In the following, a coset means a right-coset. Check that{a3, a4, a5} is a right-coset ofZ3 in S3. The number of
elements of the coset is the order of the subgroup, i.e.|Hg| = orderH.

Every elementg of G belongs to exactly one coset of a given subgroupH. It follows, that for finite groups
G, the order ofH must be a factor or divisor of the order ofG.

A subgroupH of G is calledinvariant or normal, if gH = Hg for all g ∈ G. This notation means more
precisely the following:∀ g ∈ G, h1 ∈ H : ∃ h2 ∈ H : h1g = gh2 or gh2g

−1 = h1. Is Z3 a normal subgoup of
S3 ? What about the subgroup{e, a4} of S3 ?

If H is an invariant subgroup ofG, the so-calledcoset spaceG/H is again a group. The multiplication law
on G implies the multiplication law onG/H. Check this. The groupG/H is called thefactor groupof G by H.
What isS3/Z3 ?

Thecenterof G is the always Abelian inavriant subgroup ofG defined byC(G) = {c ∈ G : cg = gc ∀ g ∈
G}. Note, however, thatC(G) might well be trivial.

Invariant subgroups were defined via the relationgHg−1 = H for all g ∈ G. In a similar fashion, we can
defined invariant subsetsS by the relationg−1Sg = S for all g ∈ G. Such invariant sets are calledconjugacy
classes. They do not necessarily form groups. Find the conjugacy classes ofS3. It will turn out that the conjugacy
classes of a finte groupG are in one-to-one correspondence with the irreps ofG. Moreover, every subgroupH of
G, which is a union of conjugcy classes, is an invariant subgroup.

Theorem 3. If ρ1(g)A = Aρ2(g) for all g ∈ G, whereρ1 andρ2 are inequivalent irreps, thenA = 0.
Proof: If there is a vector|µ〉 with |µ〉 = 0, then there exists a non-zero projectorΠ onto the subspace that is
annihilated byA. This subspace is invariant underρ2 becauseAρ2(g)Π = ρ1AΠ = 0 for all g ∈ G. But since
ρ2 is an irrep,Π mus project onto the whole space andA must vanish. IfA annihilates one state, it annihilates all
states. In a similar fashion, one shows the analogous statement, if there is a bra〈ν| with 〈ν|A = 0. If no state is
annihilated byA to either side,A must be an invertible square matrix. But then,A−1ρ1(g)A = ρ2(g) for all g ∈ G
which simply says thatρ1 andρ2 are equivalent reps. contradicting the assumption.

Theorem 4. If ρ(g)A = Aρ(g) for all g ∈ G, whereρ is a finite-dimensional irrep, thenA ∝ 1l.
Remark:In the proof of the this theorem, the assumption that the representation is finite dimensional is curcial.
Both these theorems form what is known asSchur’s Lemma. Of course, theorem 4 is valid for the case whereρ1

is equivalent toρ2. Due to a simple base change, we can then always manage to haveρ1 = ρ2, as assumed in the
theorem. An important side effect of the theorem is that the form of the basis states of an irrep is essentially fixed.
One sees this be rewriting theorem 4 in the form∀ g ∈ G : A−1ρ(g)A = ρ(g) =⇒ A ∝ 1l. Thus, once the form
of ρ is fixed, there are no non-trivial similarity transformations anymore. The only unitary transformations we still
can make is to multiply all states by the same phase factor.
Proof: We use the fact thatρ is finite-dimensional, because we use the fact that any finite-dimensional matrixA
has at least one eigenvalue. Indeed, the characteristic equationdet(A−λ1l) = 0 has at least one root. Let|µ〉 be an
eigenvector to this one eigenvalue. We then haveρ(g)(A−λ1l) = (A−λ1l)ρ(g) for all g ∈ G and(A−λ1l)|µ〉 = 0.
We can then apply the argument of the proof of theorem 3 to the matrix(A− λ1l) to conclude that(A− λ1l) = 0.
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Orthogonality relations. Irreps have some very remarkable properties. Since irreps are more or less uniquely determi-
ned, we can introduce a labelα for inequivalent irreps. Thus,|α, i〉 is thei-th state of an orhtonormal basis in the
vector spaceVα of the irrepρα, whereρα is chosen unitary and in a canonical form, i.e. all occurences ofρα(g)
shall be represented by the same matrix. Let us define the quantities

Aαβ
jk =

∑
g∈G

ρα(g−1)|α, j〉〈β, k|ρβ(g) .

Note, that again we average over the whole group. Check the intertwining property

ρα(g′)Aαβ
jk = Aαβ

jk ρβ(g′) ,

which holds for allg′ ∈ G. Now, Schur’s Lemma tells us immediately the following: Ifα 6= β, thenρα is
inequivalent toρβ and thusA = 0. If α = β, however,A ∝ 1l. Thus, we findAαβ

jk = δαβλα
jk1l. Let us determine

the constantsλα
jk. For this, we compute the trace ofAαβ

jk on the Hilbert space in two ways:

trAαβ
jk = δαβtr(λα

jk1l) = δαβλα
jktr1l = δαβλα

jknα

with nα = dimρα = dimVα. Now we compute the trace again, but pluging in the definition of theAαβ
jk first:

trAαβ
jk = tr

∑
g∈G

ρα(g−1)|α, j〉〈β, k|ρβ(g)

 = δαβ

∑
g∈G

〈α, k|ρα(g)ρα(g−1)|α, j〉 = Nδαβδjk

with N = orderG. In order to derive this, we have used the cyclic property of the trace. Thus, we arrive at

λα
jk =

N

nα
δjk ,

∑
g∈G

ρα(g−1)|α, j〉〈β, k|ρβ(g) =
N

nα
δαβδjk1l .

If we multiply the last result in such a way that we get matrix elements, we find the remarkable formula

nα

N

∑
g∈G

〈α, i|ρα(g−1)|α, j〉〈β, k|ρβ(g)|β, l〉 =
∑
g∈G

nα

N

(
ρα(g−1)

)
ij

(ρβ(g))kl

=
∑
g∈G

nα

N
(ρα(g))∗ji (ρβ(g))kl = δαβδjkδim .

Note, that we have used unitarity here. What this formula tells is that the normalized matrix elements√
nα

N
(ρα(g))ij

of inequivlanet unitary irreps are orthonormal functions of the group elements. Moreover, the matrix elements
are not only orthonormal and thus linearly independent, but they form a complete set of functions of the group
elements. Letf(g) be an arbitrary function of group elementsg ∈ G. Definingf(g) = 〈f |g〉 = 〈f |ρR(g)|e〉 with
the help of the regular representationρR and〈f | =

∑
g′∈G f(g′)〈g′|, we find

f(g) =
∑
g′∈G

f(g′)〈g′|ρR(g)|e〉 =
∑
g′∈G

f(g′) (ρR(g))g′e .

SinceρR is completely reducible, it can be decomposed into a linear combination of matrix elements of the unitary
irreps. Thus, we have proven:

Theorem 5. The matrix elements of the unitary irreps ofG are a complete orthonormal set for the vector space of the
regular representation, or alternatively, for functions of the group elementsg ∈ G.

A very important corollary of all this stuff, in particular of the orthogonality relation, is the small formula

N =
∑
α

n2
α .

Since thenα ≥ 1, we see that a finite group admits only a finite number of inequivalent unitary irreps.
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Characters. Given a rep.ρ of G on a vector spaceV , we have matrix elements(ρ(g))ij = 〈i|ρ(g)|j〉. With this, one
can define a functionχρ : G −→ C by taking the trace of the matrixρ(g), i.e.

χρ(g) = trV ρ(g) =
∑

i

〈i|ρ(g)|i〉 =
∑

i

(ρ(g))ii .

This function is called thecharacterof the representationρ. Note, that this time we sum over the base of the
representation space, not over the group elements. It follows from the cyclic property of the trace that characters
of equivalent reps. are identical. Moreover,χρα

6= χρβ
for inequivalent reps.ρα andρβ . In fact, the characters are

orthonormal. To see this, start from the formula∑
g∈G

1
N

(ρα(g))∗jk (ρβ(g))lm =
1

nα
δαβδjlδkm ,

which we have shown above, and sum overj = k andl = m in order to take the trace. This yields

1
N

∑
g∈G

χρα(g)∗χρβ
(g) = δαβ . (∗)

Why are characters constant on conjugacy classes? Compute the character for the two-dimensional representation
of S3 given above. What doesχρ(e) tell you?

One can show that the characters form a complete orthonormal basis for functions which are constant on
conjugacy classes. This means in particular, that there are precisley as many inequivalent unitary irreps as there are
conjugacy classes. To show this, recall that any such function can be expanded in terms of the matrix elements of
the irreps,

f(g1) =
∑
α,j,k

Cα
j,k (ρα(g1))jk .

Sincef shall be constant on conjugacy classes, we can write it as

f(g1) =
1
N

∑
g∈G

f(g−1g1g) =
1
N

∑
g,α,j,k

Cα
j,k

(
ρα(g−1g1g)

)
jk

=
1
N

∑
α,j,k
g,l.m

Cα
j,k

(
ρα(g−1)

)
jl

(ρα(g1))lm (ρα(g))mk .

In this last formula, we can perform the sum over the group elements explicitly making use of the orthogonality
relation. We therefore find

f(g1) =
∑
α,j,k
l,m

1
nα

Cα
j,k (ρα(g1))lm δjkδlm =

∑
α,j,l

1
nα

Cα
j,j (ρα(g))ll =

∑
α,j

1
nα

Cα
j,jχρα

(g1) .

Let us label the conjugacy classes byc and letkc be the number of elements of the conjugacy classgc. Let us define
further a matrixM with matrix elements

Mcα =

√
kc

N
χρα

(kc) .

The orthonormality relation(∗) can then be written asM†M = 1l. But M is a square matrix, since the number of
inequivalent unitary irreps is equal to the number of conjugacy classes. Thus, we also haveMM† = 1l, or∑

α

χρα
(gc)∗χρα

(gc′) =
N

kc
δcc′ .

This all has some interesting consequences: Letρ be any rep. (not necessarily irreducible). In its completely
reduced form, each irrep will occur an integer number of times,mα ≥ 0, called themultiplicity of ρα in ρ =⊕

α mαρα. We have from the orthogonality relation that

1
N

∑
g∈G

χρα
(g)∗χρ(g) = mα .

Compute the character of the regular representation. What follows for the decomposition of the regular rep. into
irreps? Play around with the characters of some representations ofS3.
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