
Seminar III & IV for the course GROUPTHEORY IN PHYSICS Mic~ael Flohr
Example:f -electron in an octahedral crystal 5. and 19. June 2003

SYMMETRIC GROUP ON FOUR ELEMENTS

A first absolutely non-trivial example for all the stuff we went through is the symmetric group on four elements,
S4. It acts in a natural way on the four corners of a terahedron by permutation. You can create these permutations
by reflections, rotations and combinations of both. However, we would like to look at the action ofS4 on a cube.

Conjugacy classes.The conjugacy classes of symmetric groups can be obtained very easily: The groupSn has precisley
n! elements, which fall intop(n) conjugacy classes. Here,p(n) denotes the number of partitions of the natural
numbern in sums of natural numbers. For example,p(4) = 5, since 4 can be written as

{4, 3 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 2 + 2} .

ThereforeS4 should have five conjugacy classes. Typically, you just give a representative of the class. To obtain
one, note that you can define for a partitionn = n1 + . . .+ nk the group element

n1 + . . . nk 7→ (1 . . . n1)(n1 + 1 . . . n1 + n2) . . . (n1 + . . . nk−1 + 1 . . . n1 + . . . nk−1 + nk)

made out ofk disjunct cycles. Cycle of one element only are trivial, and are therefore often omitted in the notation.
A cylce (i1i2 . . . im) describes the permutation

(
i1i2i3...im−1im
imi1i2...im−2im−1

)
. In our exampleS4, we find representatives of

the five conjugacy classes as follows:

Partition representative g c(g) [g]
1+1+1+1 1 = (1)(2)(3)(4) 1 e

2+1+1 (12) = (12)(3)(4) 6 C2

3+1 (123) = (123)(4) 8 C3

4 (1234) 6 C4

2+2 (12)(34) 3 C2
2 .

It is important to understand that each representative of a class is maped under conjugation with any group element
into an element which has an equivalent decomposition into cycles. Consider for example the representativeg =
(123) for the conjugacy class of the 3-cycles. Under conjugationh−1gh, this goes to

(
i1i2i3i4
1 2 3 4

)
(123)

(
1 2 3 4
i1i2i3i4

)
=(

i1i2i3i4
2 3 1 4

)(
1 2 3 4
i1i2i3i4

)
=
(
i3i1i2i4
1 2 3 4

)(
1 2 3 4
i1i2i3i4

)
=
(
i3i1i2i4
i1i2i3i4

)
= (i1i2i3), which indeed is again a 3-cycle. In the same

manner, we can understand how many elements a given class possesses. Anm-cycleg has per definition orderm,
i.e.gm = 1. Therefore, there are(m− 1)!

(
n
m

)
distinctm-cycles onn elementes. It gets a bit more complicated to

compute this for classes which consist out of several non-trivial cycles. The result for a conjugacy class, which is
built out ofp1 1-cycles,p2 2-cylces etc., which hence belongs to the partition

n = 1 + . . .+ 1︸ ︷︷ ︸
p1

+ 2 + . . .+ 2︸ ︷︷ ︸
p2

+ . . .+ n︸︷︷︸
pn

7→ g = Cp1
1 Cp2

2 . . . Cpnn ,

is given by

c(g) = n!

(
n∏

m=1

mpmpm!

)−1

.

In this way you find the numberc(g) of elements of a conjugacy class[g] for our exampleS4, as given in the above
table.

Character table. With the conjugacy classes as found above, we can now compute the characters of the irreps. The
character table forS4 reads

S4 e 6C2 8C3 6S4 3C2,2

U 1 1 1 1 1
U ′ 1 -1 1 -1 1
V 3 1 0 -1 -1
V ′ 3 -1 0 1 -1
W 2 0 -1 0 2 .

The first three irreps are easily identified, they are the trivial, the alternating and the standard irrep, respectively,
U = Trv, U ′ = Alt, undV = Std. Note that the standard irrep ofSn is given by the quotient of the permutation
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representation onn elements with the diagonal invariant subspace (equivalent to the trivial representation). Thus,
it has dimensionn− 1. Now, the character of the permutation representations is very easy to compute, it is simply
the number of elements fixed by the action of the group element considered, because these are the only non-zero
diagonal matrix elements. ThusχStd = χPermut − χTrv . One might guess that the representationV ′ = V ⊗ U ′
is irreducible, with characterχV ′(g) = χV (g)χU ′(g), and indeed(χV ′ , χV ′) = 1. Moreover,χV ′ is linearly
independet from the other three characters. So, since there can only be five irreps, we must find one irrepW of
dimension two, since24 = 12 + 12 + 32 + 32 + x2, such thatx = 2. Now, since the regular representation of any
finite groupG is complete, we can determine the fifth character by simply using∑

χ χ(g)χ(g) = |G|
c(g) ,∑

χ χ(g)χ(h) = 0 für h 6∈ [g] .

In these formulæ, the sum runs over the characters of all irreps. To determine the dimension of the sought fifth
irrep, one has to solve the equation

∑
χ χ(e)χ(e) = 24. In an analogous way, you obtain the values ofχW for all

the other conjugacy classes.

Remark. The irrepW has forC2
2 the character valueχ(C2

2 ) = 2. Now,C2
2 is an involution, which has onW trace two.

SinceW has dimension two, it follows thatC2
2 acts as identity onW . We can make a general remark here: Let

N ⊂ G a normal subgroup, i.e. gN ∈ N andNg ∈ N for all g ∈ G. Let a representationρ : G → GL(W )
be trivial onN . Then we have a faktorizationG → G/N → GL(W ), i.e. we can identify representations of
G/N with representations ofG, which are trivial onN . In our exampleN = 〈e, (12)(34), (13)(24), (14)(23)〉,
andW is a representation of the quotient groupS4/N ' S3. More precisely, one can see thatW is the standard
representation ofS3. One also says thatW is thepull backof S3 to S4.

Interpretation. The symmetric groupS4 can be viewed as the group of movements of a cube, which map it onto itself.
This includes movements one can perform in real space, such as rotations and translations, but not reflections! The
group acts on the four main diagonals of the cube. Then,S3 is the quotient group which operates on the three pairs
of opposed faces. To explain this a bit better, here some pictures:
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Please note that the corresponding rotations around the main diagonals act correctly as they should, but they
automatically induce a representation of the group acting on the faces. Of course, they also induce a represen-
tation on the edges or the corners, respectively. These are permutation representations of dimensions6, 12 and
8, respectively. The best thing is to take a dice and check it out for yourself. On an admissible dice, the oppo-
sing faces show the number pairs (1,6), (2,5) and (3,4). You can check yourself where these faces are maped
to under rotations around the main diagonals. Since these are premutation representations, the character values
are simply the numbers of faces left invariant under such a rotation. It follows thatχ(C2) = χ(C3) = 0 and
χ(C4) = χ(C2

2 ) = 2. Thus, we find the character for the representation on the faces asχfaces = (6, 0, 0, 2, 2).
Furthermore,(χ, χ) = 1

24 (1 ·62 +6 ·0+8 ·0+6 ·22 +3 ·22) = 3, such that the representation on the faces is a sum
of three irreps. With the help of the character table, one easily finds out that(χ, χU ) = (χ, χV ′) = (χ, χW ) = 1,
and that all other scalar produts ofχ with another irreducible character vanish. Thus, the face representation is iso-
morphic toU ⊕V ′⊕W . Therefore, ths six-dimensional representation has a three-dimensional subrepresentation,
which is spaned by the sums of the three opposing pairs of faces. Since it obviously contains the sum of all faces, it
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contains the trivial irrep. Thus, it must beU ⊕W . The differences of the opposing pairs of faces must hence span
the remaining 3-dimensional irrep, which isV ′.

Representation in detail. Assign to each facei a base vector|i〉 of a ortho-normal base ofR6, since the face represen-
tation is 6-dimensional. As on any regular dice, the opposing pairs of faces show the numbers(1, 6), (2, 5) and
(3, 4). In order to make it possible to compare configurations, our starting position in the following will be a dice
where the one is on the front, the two on the left side, and the three on top. This looks as follows:

The representatives of the conjugacy classes shown in the pictures are then given by the following explicit6 × 6
matrices:

ρFlächen((12)) =


0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

 , ρFlächen((134)) =


0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0

 ,

ρFlächen((1243)) =


0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

 , ρFlächen((14)(23)) =


0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0

 .

Choose now a new base in this 6-dimensional vector space by using the sums and differences of the base vectors
corresponding to the opposing face pairs, i.e. put|s16〉 = |1〉 + |6〉, |s25〉 = |2〉 + |5〉, |s34〉 = |3〉 + |4〉, |d16〉 =
|1〉 − |6〉, |d25〉 = |2〉 − |5〉, |d34〉 = |3〉 − |4〉. One checks easily that all the|dij〉 are orthogonal to the|si′j′〉.
We can now explicitly perform the reduction of the reducible 6-dimensional face representation into irreps.U is a
1-dimensional vector space and is spaned by|u〉 = |s16〉+ |s25〉+ |s34〉 = |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉. The
3-dimensional subspace, which is spaned by the vectors|sij〉, decomposes therefore into the direct sumU ⊕W ,
where the 2-dimensional spaceW is spaned, for instance, by the tow vectors|w1〉 = |s16〉 + |s25〉 − 2|s34〉 =
|1〉+ |2〉 − 2|3〉 − 2|4〉+ |5〉+ |6〉 and|w2〉 = |s16〉 − |s25〉 = |1〉 − |2〉 − |5〉+ |6〉. Indeed,|w1〉, |w2〉 are both
orthogonal to|u〉, and also mutually orthogonal. The representation onU is, of course, trivial, i.e.ρU (g) = 1 for
all g ∈ S4. It is interesting to compute the representation onW explicitly. Using again the same representatives of
the conjugacy classes, we find in the base|w1〉, |w2〉 the matrices

ρW ((12)) =
(
−1/2 3/2

1/2 1/2

)
, ρW ((134)) =

(
−1/2 3/2
−1/2 −1/2

)
,

ρW ((1243)) =
(
−1/2 −3/2
−1/2 1/2

)
, ρW ((14)(23)) =

(
1 0
0 1

)
.

This confirms thatC2
2 acts indeed trivially onW . The traces of these matrices yield precisely the values which

would expect from the character table, as it should be. If you wish, you can now go on and compute the matrices
for ρV ′(g).

Exercise. Redo the above analysis for the edges and corners of the cube. You can check your results with these data:

Representation Decomposition Dimensions
face representation = U ⊕ V ′ ⊕W 1 + 3 + 2 = 6

corner representation =U ⊕ V ⊕ U ′ ⊕ V ′ 1 + 3 + 1 + 3 = 8
edge representation =U ⊕ 2V ⊕ V ′ ⊕W 1 + 2 · 3 + 3 + 2 = 12 .
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Alternating group. For completeness, we briefly consider the alternating subgroupA4 ⊂ S4, which is generated as
A4 = 〈e, (123), (12)(34)〉. Note first thatA4/〈e, (12)(34), (13)(24), (14)(23)〉 ' Z3. With ω = e2πi/3 a third
root of unity, we easily find the character table:

A4 e 4(123) 4(132) 3(12)(34)
U 1 1 1 1
U ′ 1 ω ω2 1
U ′′ 1 ω2 ω 1
V 3 0 0 -1 .

The first three rows are clear, sinceA4 again contains the normal subgroup mentioned above. The last row is then
again obtained from the completeness releations for the characters. The relations between the irreps ofS4 andA4

are given by the following restrictions to the subgroup:

representation of S4 restriction representation of A4

U
U ′

}
−→ U ,

V
V ′

}
−→ V ,

W −→ U ′ ⊕ U ′′ .

According to this, the representationsU,U ′, V andV ′ of S4 remain irreducible under restriction toA4, while the
representationW decomposes under restriciton to the subgroupA4 in two irreducible subrepresentations,U ′⊕U ′′.
Note for this thatω + ω2 = −1. Furthermore, the pairsU,U ′ andV, V ′ become isomorphic, respectively, under
the restriction.

Octaherdon and cube — duality. The cube has 6 faces,12 edges and 8 corners. The octahedron has 8 faces, 12 edges
and 6 corners. There is a formal duality between the cube and the octahedron which is obtained by replacing the
center points of the faces by corners and vice versa. A consequence of this is that the groups of rigid movements
of cube and octahedron are identical. We can use this to work out the symmetry constraints of anf -electon in an
octahedral crystal. To clarify this a bit, we show the corresponding rotations as acting on the octahedron:
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The natural permuation representation on the cube, namly the one acting on the four main diagonals, transforms
into the natural permutation representation on the octahedron acting on the four pairs of opposing faces, which
are penetrated by the four main diagonals of the cube in which the octahedron is embedded. Note that again the
numberc(g) of elements per conjugacy class is correct.

The electron. We need to know the character of an arbitrary rotationR = exp(iϕ·L). Now, we know that such a rotation
acts asR : Y`m = eimφP`(cos θ) 7→ eimϕY`m whereϕ = ϕr̂. This follows from the explicit representation
of the generators in the baseL3 andL±. Thus,χ`(ϕ) = tr`(eiϕL3) =

∑`
m=−` eimϕ =

∑`
m=−` cos(mϕ) =

sin((2`+1)ϕ/2)/ sin(ϕ/2). Thus, we find for the particular anglesϕ associated with the allowed discrete rotations
in the octahedron, i.e.0 for e, π for 6C2, 2

3π for 8C3, π/2 for 6C4 and againπ for 3C2,2, that χ`=3(ϕ) =
(7,−1, 1,−1,−1), where` = 3 is the angular momentum of anf -electron. This can be reduced into irreps
sinceχ`=3 = χU ′ + χV + χV ′ . Thus the sevenfold degeneracy splits into three lines, two of them still threefold
degenerate, and one is not degenerate.

Selection rules.Determine now which of the matrix elements of the position operatorr can be non-zero. It is sufficent
to determine this for states transforming in irreps, i.e.〈Ψ(β)|r|Ψ(α)〉 whereα, β denote irrpes.
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