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SYMMETRIC GROUP AND YOUNG TABLEAUX

As we learned, any elemegtof a symmetric groufs,, onn elements can be written as a product of cycles. This
resulted in a classification of conjugacy classes. A given conjugacy class consists of permutations of the form of
k1 1-cycles ks 2-cycles, and so on, such that the total number of elements in it is
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It is useful to represent eaghcycle by a column of boxes of length We arrage these topjustified in decreasing
order inj from left to right. Thus, the trivial conjugacy class 8f, which consists ofi 1-cycles, is given by one

row of n boxes. Each such tableau corresponds to a different conjugacy class (in fact, to a different partition of the
numbern into a sum of positive integers), and thus to an irrep. For example, the conjugacy class for a 4-cycle, a
3-cycle and a 1-cycle i85 is represented by

Conjugacy classeslIn this way, we can easily obtain all conjugacy classes graphically. For example, fog obtain

Cap=5=1 Con=%=3 Caan=7%=2

For S, we obtain in the same way the five possibilities
R 7 e T E
Cay=1=1 Cen=7=6 Copn=%5=3 Cean=3=8 Cuiiy=7%=6

Irreps. The Young tableaux are very helpful to explicitly construct the irreps by identifying an appropriate subspace
of the regular representation 6f,. Each Young tableau fof%,, hasn boxes, into which we can fill the numbers
1,2,...,nin many different ways. In fact, there ané different possibilities to do so. Such a labeling of a Young
tableaux corresponds one-to-one to a state of the regular representation. For example, we can simply read from left
to right, row by row from top to bottom, to obtain a state, e.g.
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where the stat§532174) corresponds to the permutati¢i23456) — (6532174). To find the invariant subspace
of the regular representation corresponding to a given Young tableau, one uses the rule that a Young tableau is
completely symmetric in each row, and completely antisymmetric in each column. For instance,

— 12) 4 [21), B = [123) +[213) — [321) — [231).

ConsiderS; as an example. The Young table@r corresponds to a completely symmetric representation, which
is the one-dimensional subsapce of the regular representation wich transforms under the trivial representation.
The other one-dimensional representation is the alternating representation, which is completely antisymmetric and

therefore is associated to the tabl%u\/here interchanges are represented by a sign-change. Finally, the remaining
tableau yields a two-dimensional representation, sinc8!tke6 different labelings give only two different states,

since
= |123) + [213) — |321) — |231), = [231) +[321) — [132) — [312),
= |213) 4 [123) — [312) — |132), = [132) + [312) — [231) — [321),
= [321) 4 |231) — [123) — |213), = [312) + [132) — |213) — |123).



Hook rule. We can determine the dimension of the irreps byrtbek number?, where the irrepy;, ;,. .. ;) correspon-
ding to the Young tableau with columfi, jo, . . ., j,) has dimension dim = %’ The hook number is computed
in the following way: A hook comes from the bottom passing through one of the columns to some box within the
tableau, then turns right and leaves the tableau through one of its rows. Of course, each box has a corresponding
hook. The hook to each baxpasses on its way through a certain numhgpof boxes, where is an arbitrary
labeling of the boxes. The] =[], h;. Here is one example for a hook:

h=4.

Y OUNG TABLEAUX AND su(3)

We learned in the lecture thai(3) has two fundamental representations, both of dimension three. Since one is the
complex conjugate of the other, they are often simply denoted by= p(;,0) = 3andp.> = p(o,1) = 3. We also

know that any irrep with weight. = nw' + mw? is contained in the tensor product of the fundamental irreps as
P(n,m) C 39" © 32, However, sincd ® 3 = 6 @ 3, we only need one of the fundamental irreps to build all the
irreps.

Now, irreps ofsu(3), or more generallysu(n), have the property that they transform irreducibly under
permutation of the labels of their tensor indices. Thus, they can be classified in a very similar fashion with the help
of Young tableaux, as the irreps of the symmetric groups! In fact, a generalirrep) is essentially a tensor with
componentsﬁlﬁ::}’:ﬂ, seperately symmetric in upper and lower indices, and traceless. Lower indices can be raised
with the help of the completely antisymmetti¢ensors,
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The new tensol” is antisymmetric in each pak; < ¢;, and it is symmetric in the exchange of paits/; «—
ki, £;. To each such tensdf we can associate a Young tableau of the form

ol - e,
One can now show that the tensérhas the right symmetry properties. First, one should keep in mind that the
lowering operators, acting on the highest weight state, preserve the symmetry such that it is sufficient to study the
symmetry of the highest weight, or the symmetry of the corresponding tensor components. The highest weight of
the irrep(n, m) has tensor components dfwith all i,, = 1 and all thej, = 2, thus the components of thétensor

arei, = 1 and all pairsks,ls = 1, 3. Thus, the symmetry is as for the Young tableaux for the symmetric groups,
symmetric in each of the rows, antisymmetric in each of the columns. The traceless conditiondefethgsor
translates to the condition
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of the Y-tensor. Now, this symmetrizing prescription can be used to symmetrize an arbitrary tensor in order to
project out a specific irrep. For example,[3##172%1 is a general tensor with three upper indices, but no special
symmetry property, the following Young diagram produces a symmetrized tensor,

jkl ‘72‘ N Bj1j2k'1 + Bj2j1k1 _ Bk1j2j1 _ Bj2k71jl ,
1
which transforms according to th@, 1) irrep, i.e. the adjoint representation. The recipe can be generalized to
Young tableaux with more than two rows. However, in the casa.($), no Young tableau can have more than
three rows since there is no completely antisymmetric object with four or more indices which can take on only
three values. Furthermore, any column with three boxes is irrelevant, since it is simply a completely antisymmetric
object in three indices, thus it corresponds toeatensor. In fact, forsu(3), we only need to consider Young
tableaux with less than three rows. Any diagram which contain columns with three rows can be replaced by one,
where these columns are simply erased.

Clebsh-Gordan decomposition.We can use all this to decompose tensor products with the help of Young tableaux.
First, we explain in general the relation between the wejght Z?;ll kiw® of ansu(n) irrep and its Young
tableauY” which is given by building from left to right starting witk, _; columns ofn — 1 boxes, adding to the
left k,. columns ofr boxes forr = n — 2,...,2 until at the end we havik, columns with just one box each. This
is the immediate generalization of antisymmetrization iimstead of just 3 possible index values. Note that legal
Young tableaux always are such that the number of boxes per row does not increase when going down and that the
number of boxes per column does not increase when moving to the right.



Given now two representations with weights= >_. n;w’ andy’ = >~ nlw* with corresponding Young
tableauxt” andY”, the decomposition g, ® p,» works then as follows: One has to distribute all the boxes of the
tableauY” to the tablead”, but in a certain manner. Fill the boxes¥f from top to bottom with symbols, say
in the first row,b in the second row and so on. Now attach the boxes &gtfitom the first row ofY”” in all possible
ways to the tableat” which form legal tabelaux. Then go on with the boxes visHrom the second row df”’
and form again legal tabelaux, but with the additional rule that the numbesraxfcumulated by reading the rows
from right to left from the top row to the bottom row must not be larger than the numhes tf avoid double
counting. Continue in the same way with the other row¥ balways ensuring that the tableaux are not only legal,
but that the number of the new symols accumulated from right to left top to bottom never exceeds the number of
the preceeding symbol. Coming backstd3) we obtain in this way for example

D®@=Dﬂ@;
3 ® 3 - 6 @ 3 ,
H®@= o] & []
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The dimensions of the involved irreps will be explained further below. Let us now do a slightly more complicated
example, namely the decompositi®® 3 = 6 © 3 which we can immediately guess from the things we did above,
since this is simply the complex conjugate representatiod ®f3 = 6 ¢ 3. However, with the Young tableau
recipe this goes as follows:
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where we crossed out tableaux which either violate the rule that they cannot have mose=itsarows, or which
violate the rule that the number & must not be larger than the numberefwhen counted from right to left and
top to bottom to any of thés (here, there is just one).

It is a very useful exercise to do the decompositio8cf 8 = 27 $ 10 ® 10 ¢ 8 & 8 d 1. However, to
check that you did everything right, you need a rule to compute the dimension of an irrep associated to a Young
tableau. So, here it comes:

Dimension of irreps. It is convenient to introduce one more notation. For the Lie algehir@s), the irrep with highest
weighty = Z;‘;ll k;w' has a Young tableau with columffg, /2, . . .] where/; is the length of the-th column.
As discussed above, tiie are easily obtained from thg because there atg columns of lengtti. The sequences
[¢1,¢,...] are sequences of non-increasing integers. For instancg;tthundamental representation is in this
notation denoted by;], i.e. by a Young tableau with just one column of lengtHn this notation, the exercise
reads to verify thal2, 1] ® [2,1] = [2,2,1,1] ® [3,1,1,1] & [2,2,2] & [3,2,1] & [3,2,1] & [3, 3].

Now, how do we compute the dimension of an irrep associated to the tdbleésl . . .| ? This goes much
in the same way as the computation of the dimensions of the irreps of the symmteric groups with the help of the
hook number7. What changes it the numerator. Thus, instead!@f for the case of irreps of,,, we now get
the rule . ' ( n ( k1)
n! n—+1)! n+k—1)!
dim [0y, 0a, ..., 0| = —, F= .
il b Be] = s ) (nt1—l) " (ntk—1— 0y
This is thefactor over hooks ruleYou obtain the factofF by labeling the Young tableau in a certain way and then
compute the product over all the lables. Start in the top left corneraitBoing along a row from left to right,
increase the label one by one. Going down a column one by one, decrease the label one by one. Here a hopefully
helpful picture explaining how to get:

n n+1 | n+2 n+3‘
n—1 n n+1
n—2|n-—1

n=3 F=[nn=1)(n=2)n=3)[(n+1)n(n-1)][(n+2)(n+1)][(n+3)].




We note for completeness that the complex conjugate of anifrefy, . . ., £x] is given by thelty, ls, ..., 4] =
n—Llgy...,n— Lo, n— £1]. You may convince yourself that this leads to the same dimension. The tablaad
its complex conjugat& obviously add up to a rectangle of heighand widthk.

More on su(n). The groupSU (n) is the group of special unitany x n matrices, generated by hermitean traceless
n X n matrices. We normalize the Killing form for the adjoint representations suchitfig{7;,) = %6(11,. For the
raising and lowering operators in the Cartan-Weyl basis we choose the matrices, which have just one non-zero off-
diagonal element, which takes the va@g. The group has rank— 1 because there can only he- 1 independent
traceless diagonal matrices with real entries. We choose these Cartan generators as

1 m
( )J 2m(m+1) <; k9jk ,m+197, +1>
Thus,(H,, )i = 1forl <i < mand(H,,)m+1,m+1 = —m upto the normalization factdr//2m(m + 1). In

total there arex? — 1 independent traceless matrices which generatettienensional defining representation of
su(n), often denoted by its dimensian The weights arén — 1)-dimensional vectors, obviously given by

) 1 m
N = (Hp)jj =~ Sk — mbjme | -
(1) (Hm)jj 2m(m + 1) (1; ik s +1>
One can check easily that - 1/ = %=1 andp’ - uf = — 5= fori < j. Thus, they have all the same length and two
weights have always the same angle between them. In fact, they form thé)-simplex in(n — 1)-dimensional

space.

It is convenient to choose the ordering prescription for positivity in a different way than we have done so
far. A weight is called positive if théast non-zero component is positive. Then the weights safisfy> 12 >
. > u™. As usual, the raising and lowering operators move from one weight to another, so the roots are the
differences between the weights, = p* — ! fori = 1,...,n — 1. The roots all have length one, and we have
al ol = 0ij — %&-Jﬂ. The fundamental weights can easily be found from the inverse of the Cartan matrix, but

by simply looking at the formulae we have so far, one can infer that theyulriaétdzé.:1 .

Now, as insu(3), we can associate states with tensors. TS, “»l|i; .. .4,,), whereA is completely
antisymmetric in all its (upper) indices, are the states of an antisymmetric combinatiodefining representati-
ons. Due to its complete antisymmetry, this forms an irrep. Furthermore, no two indices can take the same value.
Thus, the highest weight of this irrep corresponds to the state, where one index is 1, another is 2, and so on. So, the
highest weight is the fumdamental weightt" = Z;Ll p’ and the irrep is the fundamental rgp]. The highest
weight of any irrep can be expandedias- Y, k;w’ with non-negative integers . The tensor associated with this
representation has, for each=1,...,n — 1, preciselyk; indices that are antisymmetric within each set among
themselves. The evident generalization of the argumetfd) shows that the symmetry porperties of this tensor
can be obtained from the Young tableau

m—1,...,n—=1,n—2,...,n—2,...,2,...,2,1,...,1].

Fn_1 kn_2 ko k1

This gives a tensor of the right form. Again, we have to check the symmetry properties only for the highest weight
state, which has a term in which the top row of the Young tableau has only entries 1, the second only entries 2,
the third only entries 3, etc. Thus, the desired tensor is obtained by first symmetrizing in the indices in each of the
rows, and then antisymmetrizing in the indices in each of the columns. This is eaxtly the symmetry condition used
to construct the irreps of the permutation groups! Therefore, the irrepgf with m indices are associated with

the irreps ofS,,,. Tensors for Young tableaux with columns of length greater thaanish identically, columns of

length equal to: correspond to the unique totally antisymmetric rantensor (are-tensor withn indices), and

can thus we omitted. So, Tableaux which differ only by a number of columns of lenggibng to the same irrep.

Finally, the Clebsh-Gordan decomposition works sa(n) in exactly the same way as feu(3). The
decomposition can be done via Young tableaux without even specifyifkixing n later then might result in
eliminating certain tableau which then have too long columns, or in changing tableaux by omitting columns of
lengthn. Note that boxes can only dissapear from a tableau when such a column ofiéagédmoved. Therefore,
the tensor produd ® Y’ of tableaux withj andk boxes, respectively, will have a number of boxes which is equal
to j + k£ modn. Final exercise: Decompos$é] ® [4] = [4,4] & [5,3] ® [6,2] & [7,1] & [8].



