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SYMMETRIC GROUP AND YOUNG TABLEAUX

As we learned, any elementg of a symmetric groupSn onn elements can be written as a product of cycles. This
resulted in a classification of conjugacy classes. A given conjugacy class consists of permutations of the form of
k1 1-cycles,k2 2-cycles, and so on, such that the total number of elements in it is

C(k1,k2,...kn) = n!
∏
j

(jkj kj !)−1 .

It is useful to represent eachj-cycle by a column of boxes of lengthj. We arrage these topjustified in decreasing
order inj from left to right. Thus, the trivial conjugacy class ofSn, which consists ofn 1-cycles, is given by one
row of n boxes. Each such tableau corresponds to a different conjugacy class (in fact, to a different partition of the
numbern into a sum of positive integers), and thus to an irrep. For example, the conjugacy class for a 4-cycle, a
3-cycle and a 1-cycle inS8 is represented by

Conjugacy classes.In this way, we can easily obtain all conjugacy classes graphically. For example, forS3 we obtain

C(3) = 3!
3! = 1 C(2,1) = 3!

2 = 3 C(1,1,1) = 3!
3 = 2

.

ForS4 we obtain in the same way the five possibilities

C(4) = 4!
4! = 1 C(3,1) = 4!

4 = 6 C(2,2) = 4!
8 = 3 C(2,1,1) = 4!

3 = 8 C(1,1,1,1) = 4!
4 = 6

.

Irreps. The Young tableaux are very helpful to explicitly construct the irreps by identifying an appropriate subspace
of the regular representation ofSn. Each Young tableau forSn hasn boxes, into which we can fill the numbers
1, 2, . . . , n in many different ways. In fact, there aren! different possibilities to do so. Such a labeling of a Young
tableaux corresponds one-to-one to a state of the regular representation. For example, we can simply read from left
to right, row by row from top to bottom, to obtain a state, e.g.

6 5 3 2
1 7
4 −→ |6532174〉 ,

where the state|6532174〉 corresponds to the permutation(123456)→ (6532174). To find the invariant subspace
of the regular representation corresponding to a given Young tableau, one uses the rule that a Young tableau is
completely symmetric in each row, and completely antisymmetric in each column. For instance,

1 2 = |12〉+ |21〉 ,
1 2
3 = |123〉+ |213〉 − |321〉 − |231〉 .

ConsiderS3 as an example. The Young tableau corresponds to a completely symmetric representation, which
is the one-dimensional subsapce of the regular representation wich transforms under the trivial representation.
The other one-dimensional representation is the alternating representation, which is completely antisymmetric and

therefore is associated to the tableauwhere interchanges are represented by a sign-change. Finally, the remaining
tableau yields a two-dimensional representation, since the3! = 6 different labelings give only two different states,
since

1 2
3 = |123〉+ |213〉 − |321〉 − |231〉 , 2 3

1 = |231〉+ |321〉 − |132〉 − |312〉 ,
2 1
3 = |213〉+ |123〉 − |312〉 − |132〉 , 1 3

2 = |132〉+ |312〉 − |231〉 − |321〉 ,
3 2
1 = |321〉+ |231〉 − |123〉 − |213〉 , 3 1

2 = |312〉+ |132〉 − |213〉 − |123〉 .
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Hook rule. We can determine the dimension of the irreps by thehook numberH, where the irrepρ(j1,j2,...,jn) correspon-
ding to the Young tableau with columns(j1, j2, . . . , jn) has dimension dimρ = n!

H . The hook number is computed
in the following way: A hook comes from the bottom passing through one of the columns to some box within the
tableau, then turns right and leaves the tableau through one of its rows. Of course, each box has a corresponding
hook. The hook to each boxi passes on its way through a certain numberhi of boxes, wherei is an arbitrary
labeling of the boxes. Then,H =

∏
i hi. Here is one example for a hook:

-`
h = 4 .

YOUNG TABLEAUX AND su(3)

We learned in the lecture thatsu(3) has two fundamental representations, both of dimension three. Since one is the
complex conjugate of the other, they are often simply denoted byρω1 = ρ(1,0) = 3 andρω2 = ρ(0,1) = 3. We also
know that any irrep with weightµ = nω1 + mω2 is contained in the tensor product of the fundamental irreps as
ρ(n,m) ⊂ 3⊗n ⊗ 3⊗m. However, since3⊗ 3 = 6⊕ 3, we only need one of the fundamental irreps to build all the
irreps.

Now, irreps ofsu(3), or more generallysu(n), have the property that they transform irreducibly under
permutation of the labels of their tensor indices. Thus, they can be classified in a very similar fashion with the help
of Young tableaux, as the irreps of the symmetric groups! In fact, a general irrep(n,m) is essentially a tensor with
componentsAi1...inj1...jm

, seperately symmetric in upper and lower indices, and traceless. Lower indices can be raised
with the help of the completely antisymmetricε-tensors,

Y i1...in k1`1...km`m = εj1k1`1 . . . εjmkm`mAi1...inj1...jm
.

The new tensorY is antisymmetric in each pairki ↔ `i, and it is symmetric in the exchange of pairski, `i ↔
ki′ , `i′ . To each such tensorY we can associate a Young tableau of the form

`1

k1
. . .
. . .

`m

km i1 . . . in

One can now show that the tensorY has the right symmetry properties. First, one should keep in mind that the
lowering operators, acting on the highest weight state, preserve the symmetry such that it is sufficient to study the
symmetry of the highest weight, or the symmetry of the corresponding tensor components. The highest weight of
the irrep(n,m) has tensor components ofAwith all ir = 1 and all thejs = 2, thus the components of theY -tensor
areir = 1 and all pairsks, ls = 1, 3. Thus, the symmetry is as for the Young tableaux for the symmetric groups,
symmetric in each of the rows, antisymmetric in each of the columns. The traceless condition of theA-tensor
translates to the condition

εi1k1l1Y
i1...in k1`1...km`m = 0

of theY -tensor. Now, this symmetrizing prescription can be used to symmetrize an arbitrary tensor in order to
project out a specific irrep. For example, ifBj1j2k1 is a general tensor with three upper indices, but no special
symmetry property, the following Young diagram produces a symmetrized tensor,

k1

j1 j2 → Bj1j2k1 +Bj2j1k1 −Bk1j2j1 −Bj2k1j1 ,

which transforms according to the(1, 1) irrep, i.e. the adjoint representation. The recipe can be generalized to
Young tableaux with more than two rows. However, in the case ofsu(3), no Young tableau can have more than
three rows since there is no completely antisymmetric object with four or more indices which can take on only
three values. Furthermore, any column with three boxes is irrelevant, since it is simply a completely antisymmetric
object in three indices, thus it corresponds to anε-tensor. In fact, forsu(3), we only need to consider Young
tableaux with less than three rows. Any diagram which contain columns with three rows can be replaced by one,
where these columns are simply erased.

Clebsh-Gordan decomposition.We can use all this to decompose tensor products with the help of Young tableaux.
First, we explain in general the relation between the weightµ =

∑n−1
i=1 kiω

i of an su(n) irrep and its Young
tableauY which is given by building from left to right starting withkn−1 columns ofn − 1 boxes, adding to the
left kr columns ofr boxes forr = n− 2, . . . , 2 until at the end we havek1 columns with just one box each. This
is the immediate generalization of antisymmetrization inn instead of just 3 possible index values. Note that legal
Young tableaux always are such that the number of boxes per row does not increase when going down and that the
number of boxes per column does not increase when moving to the right.
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Given now two representations with weightsµ =
∑
i niω

i andµ′ =
∑
i n
′
iω
i with corresponding Young

tableauxY andY ′, the decomposition ofρµ⊗ ρµ′ works then as follows: One has to distribute all the boxes of the
tableauY ′ to the tableauY , but in a certain manner. Fill the boxes ofY ′ from top to bottom with symbols, saya
in the first row,b in the second row and so on. Now attach the boxes withas from the first row ofY ′ in all possible
ways to the tableauY which form legal tabelaux. Then go on with the boxes withbs from the second row ofY ′

and form again legal tabelaux, but with the additional rule that the number ofbs accumulated by reading the rows
from right to left from the top row to the bottom row must not be larger than the number ofas to avoid double
counting. Continue in the same way with the other rows ofY ′ always ensuring that the tableaux are not only legal,
but that the number of the new symols accumulated from right to left top to bottom never exceeds the number of
the preceeding symbol. Coming back tosu(3) we obtain in this way for example

⊗ a = a ⊕
a

3 ⊗ 3 = 6 ⊕ 3 ,

⊗ a = a ⊕

a

3 ⊗ 3 = 8 ⊕ 1 .

The dimensions of the involved irreps will be explained further below. Let us now do a slightly more complicated
example, namely the decomposition3⊗3 = 6⊕3 which we can immediately guess from the things we did above,
since this is simply the complex conjugate representation of3 ⊗ 3 = 6 ⊕ 3. However, with the Young tableau
recipe this goes as follows:

⊗ a

b
=

a

b�
�
�
�
�

A
A
A
A
A ⊕ b

a�
�
�
�

@
@
@
@ ⊕ a b

��
��
�

HH
HH

H ⊕ a

b
⊕ a

b

,

where we crossed out tableaux which either violate the rule that they cannot have more thann = 3 rows, or which
violate the rule that the number ofbs must not be larger than the number ofas when counted from right to left and
top to bottom to any of thebs (here, there is just one).

It is a very useful exercise to do the decomposition of8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1. However, to
check that you did everything right, you need a rule to compute the dimension of an irrep associated to a Young
tableau. So, here it comes:

Dimension of irreps. It is convenient to introduce one more notation. For the Lie algebrassu(n), the irrep with highest
weightµ =

∑n−1
i=1 kiω

i has a Young tableau with columns[`1, `2, . . .] where`j is the length of thej-th column.
As discussed above, the`j are easily obtained from theki because there areki columns of lengthi. The sequences
[`1, `2, . . .] are sequences of non-increasing integers. For instance, thej-th fundamental representation is in this
notation denoted by[j], i.e. by a Young tableau with just one column of lengthj. In this notation, the exercise
reads to verify that[2, 1]⊗ [2, 1] = [2, 2, 1, 1]⊕ [3, 1, 1, 1]⊕ [2, 2, 2]⊕ [3, 2, 1]⊕ [3, 2, 1]⊕ [3, 3].

Now, how do we compute the dimension of an irrep associated to the tableau[`1, `2, . . .] ? This goes much
in the same way as the computation of the dimensions of the irreps of the symmteric groups with the help of the
hook numberH. What changes it the numerator. Thus, instead ofn!/H for the case of irreps ofSn, we now get
the rule

dim [`1, `2, . . . , `k] =
F

H
, F =

n!
(n− `1)!

(n+ 1)!
(n+ 1− `2)!

. . .
(n+ k − 1)!

(n+ k − 1− `k)!
.

This is thefactor over hooks rule. You obtain the factorF by labeling the Young tableau in a certain way and then
compute the product over all the lables. Start in the top left corner withn. Going along a row from left to right,
increase the label one by one. Going down a column one by one, decrease the label one by one. Here a hopefully
helpful picture explaining how to getF :

n n+ 1 n+ 2 n+ 3
n− 1 n n+ 1
n− 2 n− 1
n− 3 F = [n(n− 1)(n− 2)(n− 3)][(n+ 1)n(n− 1)][(n+ 2)(n+ 1)][(n+ 3)] .
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We note for completeness that the complex conjugate of an irrep[`1, `2, . . . , `k] is given by the[`1, `2, . . . , `k] =
[n− `k, . . . , n− `2, n− `1]. You may convince yourself that this leads to the same dimension. The tableauY and
its complex conjugateY obviously add up to a rectangle of heightn and widthk.

More on su(n). The groupSU(n) is the group of special unitaryn × n matrices, generated by hermitean traceless
n× n matrices. We normalize the Killing form for the adjoint representations such thattr(TaTb) = 1

2δab. For the
raising and lowering operators in the Cartan-Weyl basis we choose the matrices, which have just one non-zero off-
diagonal element, which takes the value1√

2
. The group has rankn−1 because there can only ben−1 independent

traceless diagonal matrices with real entries. We choose thesen− 1 Cartan generators as

(Hm)ij =
1√

2m(m+ 1)

(
m∑
k=1

δikδjk −mδi,m+1δj,m+1

)
.

Thus,(Hm)ii = 1 for 1 ≤ i ≤ m and(Hm)m+1,m+1 = −m upto the normalization factor1/
√

2m(m+ 1). In
total there aren2 − 1 independent traceless matrices which generate then-dimensional defining representation of
su(n), often denoted by its dimensionn. The weights are(n− 1)-dimensional vectors, obviously given by

(µj)m = (Hm)jj =
1√

2m(m+ 1)

(
m∑
k=1

δjk −mδj,m+1

)
.

One can check easily thatµj ·µj = n−1
2n andµi ·µj = − 1

2n for i < j. Thus, they have all the same length and two
weights have always the same angle between them. In fact, they form the(n− 1)-simplex in(n− 1)-dimensional
space.

It is convenient to choose the ordering prescription for positivity in a different way than we have done so
far. A weight is called positive if thelast non-zero component is positive. Then the weights satisfyµ1 > µ2 >
. . . > µn. As usual, the raising and lowering operators move from one weight to another, so the roots are the
differences between the weights,αi = µi − µi+1 for i = 1, . . . , n− 1. The roots all have length one, and we have
αi · αj = δij − 1

2δi,j±1. The fundamental weights can easily be found from the inverse of the Cartan matrix, but

by simply looking at the formulæ we have so far, one can infer that they readωi =
∑i
j=1 µ

j .

Now, as insu(3), we can associate states with tensors. Thus,A[i1...im]|i1 . . . im〉, whereA is completely
antisymmetric in all its (upper) indices, are the states of an antisymmetric combination ofm defining representati-
ons. Due to its complete antisymmetry, this forms an irrep. Furthermore, no two indices can take the same value.
Thus, the highest weight of this irrep corresponds to the state, where one index is 1, another is 2, and so on. So, the
highest weight is the fumdamental weightωm =

∑m
j=1 µ

j and the irrep is the fundamental rep[m]. The highest
weight of any irrep can be expanded asµ =

∑
i kiω

i with non-negative integerski. The tensor associated with this
representation has, for eachi = 1, . . . , n − 1, preciselyki indices that are antisymmetric within each set among
themselves. The evident generalization of the argument forsu(3) shows that the symmetry porperties of this tensor
can be obtained from the Young tableau

[n− 1, . . . , n− 1︸ ︷︷ ︸
kn−1

, n− 2, . . . , n− 2︸ ︷︷ ︸
kn−2

, . . . , 2, . . . , 2︸ ︷︷ ︸
k2

, 1, . . . , 1︸ ︷︷ ︸
k1

] .

This gives a tensor of the right form. Again, we have to check the symmetry properties only for the highest weight
state, which has a term in which the top row of the Young tableau has only entries 1, the second only entries 2,
the third only entries 3, etc. Thus, the desired tensor is obtained by first symmetrizing in the indices in each of the
rows, and then antisymmetrizing in the indices in each of the columns. This is eaxtly the symmetry condition used
to construct the irreps of the permutation groups! Therefore, the irreps ofsu(n) withm indices are associated with
the irreps ofSm. Tensors for Young tableaux with columns of length greater thann vanish identically, columns of
length equal ton correspond to the unique totally antisymmetric rankn tensor (anε-tensor withn indices), and
can thus we omitted. So, Tableaux which differ only by a number of columns of lenghtn belong to the same irrep.

Finally, the Clebsh-Gordan decomposition works forsu(n) in exactly the same way as forsu(3). The
decomposition can be done via Young tableaux without even specifyingn. Fixing n later then might result in
eliminating certain tableau which then have too long columns, or in changing tableaux by omitting columns of
lengthn. Note that boxes can only dissapear from a tableau when such a column of lengthn is removed. Therefore,
the tensor productY ⊗Y ′ of tableaux withj andk boxes, respectively, will have a number of boxes which is equal
to j + k modn. Final exercise: Decompose[4]⊗ [4] = [4, 4]⊕ [5, 3]⊕ [6, 2]⊕ [7, 1]⊕ [8].
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