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MATRIX LIE GROUPS

Most Lie groups one ever encouters in physics are realized as matrix Lie groups and thus as subgtd(psif
or GL(n,C). This is the group of invertibel x n matrices with coefficients it or C, respectively. This is a Lie
group, since it forms as an open subset of the vector spagexof. matrices a manifold. Matrix multiplication
is certainly a differentiable map, as is taking the inverse via Cramer’s rule. The only condition defining the open
subset is that the determinat must not be zero, which implieglithatG L (n, K) = n? is the same as the one of the
vector spacé/,, (K). However,GL(n,R) is not connected, because we cannot move continuously from a matrix
with determinant less than zero to one with determinant larger than zero. It is worth mentionigignht) is the
vector space of alb x n matrices over the fiel&, equipped with the standard commutator as Lie bracket.

We can describe most other Lie groups as subgrougsidi, K) for eitherK = R or K = C. There are
two ways to do so. Firstly, one can give restricting equations to the coefficients of the matrices. Secondly, one can
find subgroups of the automorphismsiof=~ K", which conserve a given structure &¥. In the following, we
give some examples for this:

SL(n,K). This subgroup can be defined either as the subgroup of matrices with determinant one, or as the subgroup
of transformations ofK™, which conserve the volume elemeht! A dz? A ... A dz™. The conditiondet M = 1
yields a constraint on the? coefficients such thalimg SL(n,K) = n? — 1. Clearly,sl(n,K) consists of all
traceless matriceX in gl(n,K), tr X = 0.

B,, and N,,. These are the upper triangular matrices and the upper triangular matrices with diagonal entries one, re-
spectively. Clearly, these form subgroups@f (n, K) of dimensionsdimg B,, = %n(n + 1) anddimg N,, =
%n(n — 1). The structure they preserve is the so-calledflag Vy, Cc V7 € ... C V,,_; C V,, = K", where
V; = span{e,, ..., e, }. The groupN,, has the additional property that it acts as identity on the quotiénts/'V;.

Of course, in the same way we can consider lower triangular matrices.

Cartan-Weyl basis. Remember that we decomposed any Lie alggpiato its Cartan algebrg, which in the eigen
basis consists only of diagonal matrices, and into the raising and lowering gendtataral £_, for o > 0 the
positive roots. The subspaee C g is the span of all thev,, andg = h ® ny & n_. Now, theFE, are strictly
upper triangular matrices with diagonal entries all zero, and they form a closed subalgebra. The corresponding
subgroup is a subgroup af,,, if dimg = n. The Cartan-Weyl basis thus implies a decomposition of a Lie group
into diagonal matrices, and upper and lower triangular matrices with diagonal one.

STRUCTURES FROM FORMS

Most symmetries in physics can be understood in terms of bilinear or sesquilinear forms acting on the chosen vector
space, which are left invariant under the symmetry operation. Such forms produce numbers from pairs of vectors,
and thus they are good tools to produce observable quantities. A bilinear form is a biline@r nigpx K* — K.

One may now ask, which matrices fulfill Q(Av, Aw) = Q(v,w) for all v,w € K”. We will discuss several
possibilities forQ. Given a form@, we can realize it by a Cauchy matiixwhose entries are the scalar products
Q(e;, ;) for a canonical standard basis. We h&e, w) = v' C'w such that the set of matrice$ leaving @

invariant has to satisfy the conditiotf C A = C.

@ symmetric, positive definite. In this case() can be brought into the Euclidean standard form of a scalar product.
Thus, we seek matrices, which leave the Euclidean legnth of vectors invariant. These are the orthogonal transfor-
mationsO(n, K). If we restrict to subgroups & L(n, K), then we obtain the special orthogonal grdi@(n, K),
which are the rotations, but not the reflections. The determinant of an orthogonal transformation must square to one,
so it can only bet1. Thus,O(n, K) andSO(n, K) have the same dimension. A symmetric, positive definite form
Q can always be brought into a form, where its Cauchy mdirix 1. Then, the condition read4’ A = 1l which
implies that not all matrix elements are independet. In fdétd is a symmetric matrix which yieldén(n +1)
independent equations. Thus, we fifing = £n(n — 1). One important point is thab(n, R) is not connec-
ted. In fact,SO(n,R) = O(n,R)/Zs. The algebraso(n,K) = o(n,K) are given by the skew-symmetric ma-
trices X € gl(n,K), X* = —X, when using the mathematical convention for defining the generators, since
exp(X)! = exp(X?) = exp(X) ! = exp(—X).



@ symmetric, indefinite but non-degenerate.In this case, the Cauchy matrix still has no zero eigenvalues. In fact, it
will have & positive eigen values anidnegative eigen valueg, + [ = n. One calls(k, ) the signature of the
form Q. This leads to the groupSO(k, 1), an example being the Lorentz groSi®(1, 3). Note that this makes
only sense folK = R, sine there are no symmetric, non-degenerate bilinear forms on complex vector spaces.
Obviously,SO(k,1) = SO(l, k). Of course, we can also include reflections to defit{é, /). Note thatSO(k, )
is not connected ifk, 1) # (n,0) or (0,n). As in the case of the Lorentz group, one has to components)énd)
has in total four components with a discrete cefigix Zs.

Q skew-symmetric, non-degenerateThis case is interesting for the study of Hamiltonian mechanics, which lives on
symplectic manifolds. The group which leaves such a form invariant, is c8j¢d, R), and is defined for even

0 Hm). Furthermore,
—1,, 0
dimSp(n,R) = In(n + 1). Let A € Sp(n,R). The matrixA4 is clearly also an element &fL(2m,R). The
conditionA*C A = C for A = (g 3) in block form witha, b, ¢,d € GL(m,R) yields the following constraints
for the block constituents?c andb’d must be symmetrie;'d—c'b = 11,,,. The corresponding Lie algebsa(n, R)
consists of the matrice¥ € gl(2m, R) which satisfyX* C'+ C' X = 0. One can further show that all elements of
Sp(n,R) have determinate one, and tt#at(n, R) is connected. There exists completely analogous definitions for
sthe symplectic group over complex vector spadegn, C) and its algebra.

n only. The standard form of) is for n = 2m given by the Cauchy matrix’ = (

@ Hermitean, positive definite. For complex vector spacés =~ C", one can consider sesqui-linear forms instead of
bilinear forms. Of particular interest are Hermitean forms satisfydigo, pw) = AQ (v, w)u for all v,w € V
and), u € C. Furthermore@(w,v) = Q(v, w). Itis positive definite, ifQ (v, v) > 0 for all v # 0. The condition
for matricesA leaving a Hermitean form, given via its Cauchy matfix invariant, readsAt C A = C, where
At = A if Q can be brought to standard forf = 11, the conditions transforms tdf = A~!, which defines
the groupU (n, C) = U(n) of unitary matrices. Note that onlylet A| = 1 can be fixed by this condition, so the
determinant can be any phase. RestrictindetoA = 1 defines the groupU (n) of special unitary transformations.
Theses groups have dimensiatismrU(n) = n? since we havex? conditions from the relatiosl” = A~ for
2n? real parameters. Thus, with the additional conditien A = 1, we finddimg SU(n) = n? — 1. Note that it
does not make sense to define the complex dimension for unitary groups, and in fact, unitary Lie groups are not
complex Lie groups. The reason for this is burried in the fact that unitary groups are compact, but that any compact
complex Lie group must be Abelian. One nice thing one can show is the relation= O(2n,R) N Sp(2n,R).

Q@ Hermitean, indefinite, non-degenerate.ln a similar way as we did for the real bilinear forms, we can define inde-
finite Hermitean forms of signaturg;, [). The corresponding groups are then dendigd, ) with SU(k, 1) the
subgroup of elements with determinant one.

Q@ quaternionic Hermitean. Finally, one can consider vector spaces over the division aldépthe quaternions. It is
possible to viewH = C & jC = C?, where forv = v; + jvs, We havev - j = —v, + jv;. Note that we can
realize quaternion multiplication by action of matrices@h and indeed, the Pauli matrices will do the job just
fine, implementing the three quaternionic elemeénitsk with the algebra? = j2 =k?> = —1,andi-j = —j-i =k
and its cyclic perumtations. Care has to be taken with the order, since multiplication in the quaternions is not
commutative. Similarly, vector spaces are defined’asz H* = C" + jC* = C?". Thus, viewing vectors
v = vy + jup @s two-component vectof§!) with vy, v, € C", the action of jis given by : (1) — (7 ~0)(2}),
wherel = 1,,. The involved matrix is just the standard form for a symplectic bilinear form, often cdll@dhen,
we can defineZL(n,H) as the group of matriced € GL(2n,C) which satisfyA.J = JA. Those matrices
A with real determinant one form the subgrof(n, H). A Hermitean form oriH", also called a symplectic
scalar product, is aR-bilinear form that satisfie®(A\v, pw) = AQ(v,w)u for v,w € H® and\, u € H, and
Q(w,v) = Q(v,w). The conjugate of a quaternion= a + bi + ¢j + dk is given by\ = a — bi — ¢j — dk.
The standard Hermitean form dfi" is simply Q(v,w) = ), v;w;. The group of matrices leaving this form
invariant is called the compact symplectic grotip(n, H) = Sp(n) or alternativelyU (n, H). One can show that
Sp(n) = U(2n) N Sp(2n,C). We conclude by observing that@ is an indefinite non-degenerate quaternionic
Hermitean form with signaturék, 1), the corresponding group leaving it invariant is callédk, [, H). If Q is
skew-symmetricQ(w,v) = —Q (v, w), the corresponding group is denot@d(n, H).

Q@ degenerate.One small remark concerning the case fds degenerate: Any transformation preservipavill map
the kernel of@ into itself, whereker(Q) = {v € V : Q(v,w) = 0 Yw € V'}. Thus, the group of matrices leaving
Q invariant is the group of matrices which preserve the subskac€)) and leaving the induced non-degenerate
form Q on the quotient spacé/ker(Q) invariant.



