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MATRIX L IE GROUPS

Most Lie groups one ever encouters in physics are realized as matrix Lie groups and thus as subgroups ofGL(n, R)
or GL(n, C). This is the group of invertibeln× n matrices with coefficients inR or C, respectively. This is a Lie
group, since it forms as an open subset of the vector space ofn × n matrices a manifold. Matrix multiplication
is certainly a differentiable map, as is taking the inverse via Cramer’s rule. The only condition defining the open
subset is that the determinat must not be zero, which implies thatdimKGL(n, K) = n2 is the same as the one of the
vector spaceMn(K). However,GL(n, R) is not connected, because we cannot move continuously from a matrix
with determinant less than zero to one with determinant larger than zero. It is worth mentioning thatgl(n, K) is the
vector space of alln× n matrices over the fieldK, equipped with the standard commutator as Lie bracket.

We can describe most other Lie groups as subgroups ofGL(n, K) for eitherK = R or K = C. There are
two ways to do so. Firstly, one can give restricting equations to the coefficients of the matrices. Secondly, one can
find subgroups of the automorphisms ofV ∼= Kn, which conserve a given structure onKn. In the following, we
give some examples for this:

SL(n, K). This subgroup can be defined either as the subgroup of matrices with determinant one, or as the subgroup
of transformations onKn, which conserve the volume elementdx1 ∧ dx2 ∧ . . . ∧ dxn. The conditiondet M = 1
yields a constraint on then2 coefficients such thatdimKSL(n, K) = n2 − 1. Clearly, sl(n, K) consists of all
traceless matricesX in gl(n, K), trX = 0.

Bn and Nn. These are the upper triangular matrices and the upper triangular matrices with diagonal entries one, re-
spectively. Clearly, these form subgroups ofGL(n, K) of dimensionsdimKBn = 1

2n(n + 1) anddimKNn =
1
2n(n − 1). The structure they preserve is the so-called flag0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn = Kn, where
Vi = span{ei, . . . , en}. The groupNn has the additional property that it acts as identity on the quotientsVi+1/Vi.
Of course, in the same way we can consider lower triangular matrices.

Cartan-Weyl basis. Remember that we decomposed any Lie algebrag into its Cartan algebrah, which in the eigen
basis consists only of diagonal matrices, and into the raising and lowering generatorsEα andE−α for α > 0 the
positive roots. The subspacen+ ⊂ g is the span of all theEα, andg = h ⊕ n+ ⊕ n−. Now, theEα are strictly
upper triangular matrices with diagonal entries all zero, and they form a closed subalgebra. The corresponding
subgroup is a subgroup ofNn, if dimg = n. The Cartan-Weyl basis thus implies a decomposition of a Lie group
into diagonal matrices, and upper and lower triangular matrices with diagonal one.

STRUCTURES FROM FORMS

Most symmetries in physics can be understood in terms of bilinear or sesquilinear forms acting on the chosen vector
space, which are left invariant under the symmetry operation. Such forms produce numbers from pairs of vectors,
and thus they are good tools to produce observable quantities. A bilinear form is a bilinear mapQ : Kn×Kn → K.
One may now ask, which matricesA fulfill Q(Av,Aw) = Q(v, w) for all v, w ∈ Kn. We will discuss several
possibilities forQ. Given a formQ, we can realize it by a Cauchy matrixC whose entries are the scalar products
Q(ei, ej) for a canonical standard basis. We haveQ(v, w) = vt C w such that the set of matricesA leavingQ
invariant has to satisfy the conditionAt C A = C.

Q symmetric, positive definite. In this case,Q can be brought into the Euclidean standard form of a scalar product.
Thus, we seek matrices, which leave the Euclidean legnth of vectors invariant. These are the orthogonal transfor-
mationsO(n, K). If we restrict to subgroups ofSL(n, K), then we obtain the special orthogonal groupSO(n, K),
which are the rotations, but not the reflections. The determinant of an orthogonal transformation must square to one,
so it can only be±1. Thus,O(n, K) andSO(n, K) have the same dimension. A symmetric, positive definite form
Q can always be brought into a form, where its Cauchy matrixC = 1l. Then, the condition readsAt A = 1l which
implies that not all matrix elements are independet. In fact,At A is a symmetric matrix which yields12n(n + 1)
independent equations. Thus, we finddimK = 1

2n(n − 1). One important point is thatO(n, R) is not connec-
ted. In fact,SO(n, R) = O(n, R)/Z2. The algebrasso(n, K) = o(n, K) are given by the skew-symmetric ma-
trices X ∈ gl(n, K), Xt = −X, when using the mathematical convention for defining the generators, since
exp(X)t = exp(Xt) = exp(X)−1 = exp(−X).
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Q symmetric, indefinite but non-degenerate.In this case, the Cauchy matrix still has no zero eigenvalues. In fact, it
will have k positive eigen values andl negative eigen values,k + l = n. One calls(k, l) the signature of the
form Q. This leads to the groupsSO(k, l), an example being the Lorentz groupSO(1, 3). Note that this makes
only sense forK = R, sine there are no symmetric, non-degenerate bilinear forms on complex vector spaces.
Obviously,SO(k, l) ∼= SO(l, k). Of course, we can also include reflections to defineO(k, l). Note thatSO(k, l)
is not connected if(k, l) 6= (n, 0) or (0, n). As in the case of the Lorentz group, one has to components, andO(k, l)
has in total four components with a discrete centerZ2 × Z2.

Q skew-symmetric, non-degenerate.This case is interesting for the study of Hamiltonian mechanics, which lives on
symplectic manifolds. The group which leaves such a form invariant, is calledSp(n, R), and is defined for even

n only. The standard form ofQ is for n = 2m given by the Cauchy matrixC =
(

0 1lm
−1lm 0

)
. Furthermore,

dimSp(n, R) = 1
2n(n + 1). Let A ∈ Sp(n, R). The matrixA is clearly also an element ofGL(2m, R). The

conditionAt C A = C for A =
(
a b
c d

)
in block form witha, b, c, d ∈ GL(m, R) yields the following constraints

for the block constituents:atc andbtd must be symmetric,atd−ctb = 1lm. The corresponding Lie algebrasp(n, R)
consists of the matricesX ∈ gl(2m, R) which satisfyXt C + C X = 0. One can further show that all elements of
Sp(n, R) have determinate one, and thatSp(n, R) is connected. There exists completely analogous definitions for
sthe symplectic group over complex vector spaces,Sp(n, C) and its algebra.

Q Hermitean, positive definite. For complex vector spacesV ∼= Cn, one can consider sesqui-linear forms instead of
bilinear forms. Of particular interest are Hermitean forms satisfyingQ(λv, µw) = λ̄Q(v, w)µ for all v, w ∈ V
andλ, µ ∈ C. Furthermore,Q(w, v) = Q(v, w). It is positive definite, ifQ(v, v) > 0 for all v 6= 0. The condition
for matricesA leaving a Hermitean form, given via its Cauchy matrixC, invariant, readsA† C A = C, where
A† = A

t
. If Q can be brought to standard formC = 1l, the conditions transforms toA† = A−1, which defines

the groupU(n, C) = U(n) of unitary matrices. Note that only|detA| = 1 can be fixed by this condition, so the
determinant can be any phase. Restricting todetA = 1 defines the groupSU(n) of special unitary transformations.
Theses groups have dimensionsdimRU(n) = n2 since we haven2 conditions from the relationA† = A−1 for
2n2 real parameters. Thus, with the additional conditiondetA = 1, we finddimRSU(n) = n2 − 1. Note that it
does not make sense to define the complex dimension for unitary groups, and in fact, unitary Lie groups are not
complex Lie groups. The reason for this is burried in the fact that unitary groups are compact, but that any compact
complex Lie group must be Abelian. One nice thing one can show is the relationU(n) = O(2n, R) ∩ Sp(2n, R).

Q Hermitean, indefinite, non-degenerate.In a similar way as we did for the real bilinear forms, we can define inde-
finite Hermitean forms of signature(k, l). The corresponding groups are then denotedU(k, l) with SU(k, l) the
subgroup of elements with determinant one.

Q quaternionic Hermitean. Finally, one can consider vector spaces over the division algebraH, the quaternions. It is
possible to viewH = C ⊕ jC ∼= C2, where forv = v1 + jv2, we havev · j = −v̄2 + jv̄1. Note that we can
realize quaternion multiplication by action of matrices onC2, and indeed, the Pauli matrices will do the job just
fine, implementing the three quaternionic elementsi, j, k with the algebrai2 = j2 = k2 = −1, andi · j = −j · i = k
and its cyclic perumtations. Care has to be taken with the order, since multiplication in the quaternions is not
commutative. Similarly, vector spaces are defined asV ∼= Hn = Cn + jCn = C2n. Thus, viewing vectors
v = v1 + jv2 as two-component vectors

(
v1
v2

)
with v1, v2 ∈ Cn, the action of j is given byj :

(
v1
v2

)
7→

(
0 −I
I 0

)(
v̄1
v̄2

)
,

whereI = 1ln. The involved matrix is just the standard form for a symplectic bilinear form, often calledJ . Then,
we can defineGL(n, H) as the group of matricesA ∈ GL(2n, C) which satisfyAJ = JA. Those matrices
A with real determinant one form the subgroupSL(n, H). A Hermitean form onHn, also called a symplectic
scalar product, is anR-bilinear form that satisfiesQ(λv, µw) = λ̄Q(v, w)µ for v, w ∈ Hn andλ, µ ∈ H, and
Q(w, v) = Q(v, w). The conjugate of a quaternionλ = a + bi + cj + dk is given byλ̄ = a − bi − cj − dk.
The standard Hermitean form onHn is simply Q(v, w) =

∑
i v̄iwi. The group of matrices leaving this form

invariant is called the compact symplectic groupSp(n, H) = Sp(n) or alternativelyU(n, H). One can show that
Sp(n) = U(2n) ∩ Sp(2n, C). We conclude by observing that ifQ is an indefinite non-degenerate quaternionic
Hermitean form with signature(k, l), the corresponding group leaving it invariant is calledU(k, l, H). If Q is
skew-symmetric,Q(w, v) = −Q(v, w), the corresponding group is denotedU∗(n, H).

Q degenerate.One small remark concerning the case thatQ is degenerate: Any transformation preservingQ will map
the kernel ofQ into itself, whereker(Q) = {v ∈ V : Q(v, w) = 0 ∀w ∈ V }. Thus, the group of matrices leaving
Q invariant is the group of matrices which preserve the subspaceker(Q) and leaving the induced non-degenerate
form Q̃ on the quotient spaceV/ker(Q) invariant.
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