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BIG ‘Ad’ AND LITTLE ‘ad’

The representation theory of Lie groups G amounts essentially in finding and studying Lie group homomorphisms
ρ : G→ H , whereH ⊂ GL(V ) is a matrix subgroup of the general linear group to a vector space V . The problem
is that Lie groups are also (complicated) manifolds, such that ρ not only has to respect the group multiplication
law, but also the differentiable structure of the manifold. The first step to the solution of this problem is to reduce
everything to solely local information about the Lie group in a small neighborhood of the identity element. This
information is encoded in the Lie algebra, i.e. the tangent space TeG of the Lie group at the identity element. The
(complicated) topology is then simply “forgotten”, and everything is then done in vector spaces which are much
easier to handle. Of course, it is by no means clear that almost everything one wants to know about a Lie group
can be expressed in local information. The following principles, however, ensure precisely that.

Principle (I). LetG andH be two Lie groups,G connected. A map ρ : G→ H is uniquely determined by its differential
dρe : TeG→ TeH at the point corresponding to the identity element.

Principle (II). Let G and H be two Lie groups G, connected and simply connected. A linear map TeG → TeH is the
differential of a group homomorphism ρ : G → H if and only if it respects the Lie bracket, i.e. dρe([X,Y ]) =
[dρe(X),dρe(Y )] for all X,Y ∈ TeG.

These two principles can be explicitly realized by introducing a certain map, namely the adjoint representation of
the group on its own tangent space. This representation has per definitionem the dimension dimG. The adjoint
representation is the analog of the regular representation for finite groups. Of course, we cannot represent the
group on itself, since the group is not a vector space.

Ad. The group multiplication from left mg : G → G, mg(h) = g ◦ h, is not well suited to be reduced to local
information, because it has in general no fixpoint. In fact, group multiplication with a generic element g might
lead us far away from the point h. However, group conjugation ψg : G → G, which maps each group element
h to g ◦ h ◦ g−1, is much better. It will in general map a point h to a point near h. Its differential Ad(g) =
(dψg)e : TeG → TeG should already contain some information about the structure of the group. It is important
to understand that Ad(g) defines for each g ∈ G a map TeG → TeG of the tangent space onto itself. Therefore,
Ad: G → Aut(TeG) is per constructionem a representation of the group G on the vector space TeG. The reader
should check that this is indeed true, i.e. that Ad(g)Ad(h) =Ad(g ◦ h). The most important properties of Ad are
shown in the two following diagrams which commute whenever ρ : G→ H is a group homomorphism:

G
ρ−→ H

ψg

y y ψρ(g)

G
ρ−→ H

Ad(g)=(dψg)e−→
TeG

(dρ)e−→ TeH

Ad(g)

y y Ad(ρ(g))

TeG
(dρ)e−→ TeH

.

The second diagram reads as a formula as the condition dρ(Ad(g)(X)) = Ad(ρ(g))(dρ(X)) for all X , which are
elements of the tangent space.

ad. The condition given above has one nasty drawback, namely that the map ρ still appears at one place explicitly. We
can avoid this by considering the differential of Ad, ad: TeG→ End(TeG). It is crucial to understand that ad(X)
defines for eachX ∈ TeG a map TeG→ TeG of the tangent space onto itself, i.e. ad(X)(Y ) is a linear map ad(X)
of tangent vectors Y , and yields again a tangent vector in TeG. Please note, however, that ad(·) might only be an
endomorphisms, in contrast to Ad(·), i.e. it is not necessarily an automorphism. Considering ad and Ad (in some
representation) as matrices, this means that ad(X) may have determinant zero, which cannot be the case for Ad(g),
since this would contradict the group axioms. Now, ad(X)(Y ) : TeG × TeG → TeG obviously is a bilinear map
which motivates to introduce some bracket notation for it. The reader should check the anti-symmetry property!
We define the Lie bracket as [X,Y ] ≡ ad(X)(Y ). A Lie group homomorphism ρ : G → H is characterized by
the property that its differential respects the Lie bracket. This means that the diagram

TeG
(dρ)e−→ TeH

ad(X)

y y ad(dρ(X))

TeG
(dρ)e−→ TeH

commutes. Expressed in formulæ, this amounts to the condition dρe(ad(X)(Y )) = ad(dρe(X))(dρe(Y )), or
equivalently in the notation with the Lie bracket, dρe([X,Y ]) = [dρe(X),dρe(Y )] for all X,Y ∈ TeG.
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In order to understand these rather abstract definitions of ‘Ad’ and ‘ad’, it helps a lot to view g ∈ G and X ∈ TeG
as matrices from Aut(V ) or End(V ), respectively, for an arbitrarily chosen V . This is what we have done in the
lecture. For instance, one can put G = GLnR. Then we would have End(Rn) = MnR, the set of n× n matrices
with real entries. The operations ‘Ad’ and ‘ad’ can then be given explicitly. Chose an arbitrarily parametrized path
γ : I → G in the manifold G with the properties γ(0) = e and γ′(0) = X for any fixed tangent vector X ∈ TeG.
Here and in the following, I is some finite interval. Without loss of generality, one can always assume I = [−1, 1]
Then we have Ad(γ(t))(Y ) = γ(t) ◦Y ◦ γ(t)−1 and the Lie bracket indeed takes the form of a commutator we all
know:

[X,Y ] = ad(X)(Y ) =
d

dt
(Ad(γ(t))(Y ))|t=0 = X · Y − Y · Y .

Lie algebra. A Lie algebra g is a vector space together with a bilinear skew-symmetric map [·, ·] : g × g → g, which
satisfies the Jacobi identity. This definition implies implicitly a statement with far reaching consequences, which
we can extract from the operation ‘ad’. A vector space together with a bilinear operation is a tangent space at
the identity element of a Lie group if and only if this bilinear operation is skew-symmetric and fulfills the Jacobi
identity. Our definition of ad does start from a given Lie group G, and therefore yields per constructionem a skew-
symmetric Lie bracket, [X,Y ] = −[Y,X], which automatically satisfies the Jacobi identity, since it is realised as
commutation in every representation. However, the converse is also true. If we have a Lie algebra g, then we can
(re)construct from its Lie bracket a group multiplication law and thus a Lie group.

A representation of a Lie algebra g on a vector space V is simply a map between Lie algebras ρ : g →
gl(V ) = End(V ), i.e. a map which respects the Lie bracket such that we have for all v ∈ V an operation of g on
V given by [X,Y ](v) = X(Y (v))− Y (X(v)).

Lie group versus Lie algebra. Let us summarize what we got so far: The tangent space g at the identity element of a
Lie group G is equipped in a natural way with the structure of a Lie algebra. Furthermore, if G and H are two Lie
groups with G connected and simply connected, then the maps ρ : G → H are in one-to-one correspondence to
maps between associated Lie algebras by associating to each ρ the differential (dρ)e : g→ h.

THE EXPONENTIAL MAP

We (hopefully) have now a feeling, how we can reduce a Lie group to local information which is encoded in its Lie
algebra. Now, we would like to see how we can get back from the Lie algebra to the group. Indeed, it is possible to
reconstruct (almost all of) the group structure. To do so, we consider a fixed given tangent vector X ∈ g = TeG.
Further, let ΓX = {γ : I → G : γ(0) = e, γ′(0) = X} be the set of all parametrized paths in G, which start at the
identity element and leading there in the direction of X .

Vector fields. Given a manifold M , we can define the ring of the differentiable functions C∞(M). Each function
f ∈ C∞(M) assigns to each point p ∈ M a (real) value, i.e. a point x = f(p) ∈ R. Now, a vector field v assigns
for a given f to each point p ∈M the tangent vector of f at the point p, i.e. (v(f))(p) = vp(f) ∈ TpM .

An elementary but fundamental theorem in differential geometry tells us that vector fields v on M can be
integrated to functions φ : I → M with boundary conditions φ(0) = p for some p ∈ M , and φ′(t) = vφ(t). The
function φ is uniquely characterized by the choice of boundary (or initial) conditions. We remark here that the
existence of φ is ensured by the fact that for each path γ : t ∈ I 7→ γ(t) ∈ M with I an open set of R containing
zero, and for each function q : t ∈ I 7→ R, one can find a function f ∈ C∞(M) such that f(γ(t)) = g(t).

Left-translations. One of the implications that the manifold carries a group structure is that there are families of differ-
entiable mappings of the Lie group manifold into itself, which act transitively. This means that for any two group
elements g and g′, there is a member of the family which maps g to g′. These mappings are given by the so-called
left-translationsmg : h 7→ g ◦h, which are nothing else than the group multiplications with g from left. Of course,
one could define right-translations in the same fashion. The translations which map a given group element g ∈ G
to a prescribed g′ ∈ G are mg′◦g−1 . We note that the translations can in particular be used to map any point of G
to the unit element of the group multiplication, e. It is easy to see that left-translations transport the basis of any
tangent space TgG to any other point of G in an invertible way.

Left-invariant vector fields. The existence of the left-translations admits to construct very special global vector fields
with the property that they vanish nowhere on G. We can associate to each tangent vector X ∈ g exactly one
so-called left-invariant vector field X̃ , such that X̃e = X . First of all, X̃ is a vector field that assigns to a function
f ∈ C∞(G) and for each element g ∈ G a tangent vector X̃g(f) ∈ TgG. The fact that it is left-invariant means
that this assignment is compatible with the group multiplication from left, mg : G → G. A vector field X̃ with
this property is easy to find:

X̃g(g) = dmgX(f) = X(f ◦mg) =
d

dt
f(g ◦ γ(t))|t=0 ,
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where γ is an arbitrary element of ΓX . In fact, we obviously then have

dmhX̃g(f) = dmhdmgX(f) = X(f ◦mg ◦mh) =
d

dt
f(h ◦ g ◦ γ(t))|t=0 = X̃hg(f) .

The left-invariant vector field X̃ does nothing else than to transport the tangent vector X ∈ TeG in a way compat-
ible with the group multiplication law mg to a tangent vector in TgG. Thinking of a basis in TeG, we see that we
get a moving frame which moves in accordance with the group multiplication law to a basis in TgG. This means
that the vector bundle overG where we assign to each g the tangent space TgG is trivial. Such manifolds are called
parallelizable.

Of course, left-invariant vector fields can be integrated as well, and our boundary conditions are now that
φ(0) = e and φ′(t) = X̃φ(t). The left-invariance of the special vector field X̃ together with the uniqueness
of the integration curve has the consequence that φ, where ever it is defined, is a group homomorphism, i.e.
φ(s+ t) = φ(s) ◦ φ(t) for s, t ∈ I . Let us write this down in the following way

X̃φ(s)(f) =
d

dt
f(φ(s) ◦ φ(t))|t=0 =

d

dt
f(φ(s+ t))|t=0 ,

since it is clear from the boundary conditions for φ that φ ∈ ΓX .

One-parameter subgroups. The existence of left-invariant vector fields to given tangent vectorsX ∈ g gives us integral
curves, which simultaneously are group homomorphisms. These are therefore called one-parameter subgroups.
Due to the group structure, these one-parameter subgroups φX(t), which we only defined locally for t ∈ I and
thus for a small neighborhood around e, are automatically well defined for t ∈ R. Another way to say this is the
statement that for each X ∈ g there exists exactly one path in the family ΓX , which is a group homomorphism.
This path is precisely the integral curve of the left-invariant vector field X̃ . Since this works for all X ∈ TeG, the
set of all one-parameter subgroups will completely cover a neighborhood of the identity element. Since, by use of
the group law, any arbitrarily small neighborhood of the identity generates the full (connected component of the
identity element of the) group G, we finally get the desired result that the information encoded in the Lie algebra
g suffices to reconstruct the group (to a large extent).

Exponential map. The integral curve satisfies the functional equation φ(s + t) = φ(s) ◦ φ(t). This is exactly the
functional equation of the exponential function. One therefore defines

exp : g → G
exp(X) = φX(1)

.

Since φ is unique, we obviously have φλX(t) = φX(λt). The exponential map, restricted to lines through the
origin of TeG = g, exactly yields the one-parameter subgroups. More precisely, the exponential map is the unique
map g→ G, which sends the origin to the identity element, 0 7→ e, whose differential at the origin is the identity,
i.e.

(d exp)0 : T0g = g→ TeG = g ,

and whose restriction to lines through the origin yields the one-parameter subgroups. This map is natural in the
sense that for arbitrary Lie group mappings ρ : G→ H we have that the diagram

g
(dρ)−→ h

exp

y y exp

G
ρ−→ H

commutes. This statement allows us to study the theory of representations of a Lie group by looking at the
representations of its Lie algebra!

Since (d exp)0 in g is an isomorphism, the image Im(exp) ⊃ U must contain a neighborhood of the identity
element e in G. If G is connected, then U generates the whole group G which puts Principle (I) on firm grounds.
Moreover, we get the following simple relation between ‘Ad’ and ‘ad’: Ad(exp(X)) = exp(ad(X)), which one
deduces with the help of the so-called Baker-Campbell-Hausdorff formelæ. Thus, we also obtain principle (II).

Baker-Campbell-Hausdorff. We can use the exponential map to assign to elements of the Lie algebra g elements of
the corresponding Lie group G. But how is the group multiplication law implemented, i.e. how do we find the
element Z ∈ g, such that exp(X) ◦ exp(Y ) = exp(Z) is satisfied? One can do this explicitly, when (in a given
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representation) one realizes the Lie group and its algebra by matrices. Then, the exponential map is nothing else
than

exp(X) =
∑
n

1

n!
Xn ,

which converges and is invertible with the inverse exp(−X). Obviously, we have (d exp)0 = 1. We immediately
obtain for the one-parameter subgroups

exp(λX) exp(µX) =
∑
n

∑
m

1

n!

1

m!
λnµmXn+m =

∑
N

N∑
k=0

1

N !

(
N

k

)
λkµN−kXN =

∑
N

(λ+µ)NXN = exp((λ+µ)X) .

But the whole group structure is already hidden in its Lie algebra. To see this, letX,Y be chosen from a sufficiently
small neighborhood of the origin 0 ∈ g. Furthermore, consider for g ∈ G ⊂ GLnR the map

log(g) = −
∑
n

(−)n

n
(g − e)n ∈ glnR ,

which is, of course, only valid for such g which lie in a sufficiently small neighborhood of the identity element.
But wherever this map is defined, it is obviously the inverse of the exponential map. With all this we are ready to
define the Baker-Campbell-Hausdorff product

X ∗ Y = log(exp(X) ◦ exp(Y )) .

The crucial point is not the explicit form of X ∗ Y , but the fact that the result depends only on X,Y and the
operations ad(X) and ad(Y ). The first few terms read as follows:

X ∗ Y = (X + Y ) + 1
2 [X,Y ] + 1

12 ([X, [X,Y ]] + [Y, [Y,X]]) + . . .

= (X + Y ) + 1
2ad(X)(Y ) + 1

12 (ad(ad(X))(Y ) + ad(ad(Y ))(X)) . . .

=
(
1 + 1

4 (adX − adY ) + 1
12 (ad2X + ad2Y ) + . . .

)
(X + Y ) .

Note that there are in particular no terms such as Xn, but all terms can be collected in such a way that they can
be expressed solely in terms of the Lie algebra and their Lie brackets. This implies that we do not need matrix
multiplication (which we need to explicitly compute commutators) but only linearity on g and the Lie bracket. The
proof of such formulæ is not easy, but Dynkin managed to find a closed form of the B-C-H product. This handout
closes with the uncommented display of an integral representation of the B-C-H product,

X ∗ Y = X +

∫ 1

0

g(exp(adX) ◦ exp(t adY ))(Y )dt , g(z) =
log(z)

1− 1
z

= 1−
∞∑
n=1

(−)n

n(n+ 1)
(z − 1)n .

The key point is that again X and Y themselves appear only linearly, all other terms involve only the commutator
operation (the Lie bracket). Furthermore, one sees that the expansion in a series makes sense, since the term with
the identity element just cancels,

X ∗ Y = X + Y +

∫ 1

0

dt

∞∑
n=1

(−)n+1

n(n+ 1)
(exp(adX) ◦ exp(t adY )− e)n (Y ) .

A useful formula. The problem of computing exponentials of non-commuting objects is well-known from quantum
mechanics. In particular, one often has to transform a given observable A by a unitary transformation, i.e. A 7→
UAU†. Thus, as we now can appreciate a bit better, the unitary transformation will typically be given as the
exponential of the generator of the corresponding infinitesimal transformation, namely U = Uλ(X) = exp(iλX).
Thus, one needs an explicit expression for exp(iλX)A exp(−iλX). Of course, X is a Hermitean operator and
λ a real parameter for the one-parameter subgroup, which is generated by X . Note that we now switched back
to the convention most often used in physics, where the generators of transformations are chosen Hermitean. In
mathematics, one typically uses anti-Hermitean generators, but real instead of purely imaginary coefficients. With
the B-C-H product one finds

exp(iλX)A exp(−iλX) = A+ iλ[X,A] +
(iλ)2

2!
[X, [X,A]] + . . .+

(iλ)n

n!
[X, [X, [X, . . . [X,A]]] . . .] + . . .

=

( ∞∑
n=0

(iλ)n

n!
adnX

)
(A)

= exp(iλ adX)A ,

which also demonstrates once more, how useful the notation ad(X)(·) = adX(·) is, even if we mean nothing else
than the commutator [X, · ].

4


