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IRREPS OF su(2)

In the last lecture, we constructed all finite-dimensional irreducible representations of su(2). In contrast to the way
one does this in quantum mechanics, we did not make use of the operator J2, since this is not an element of the Lie
algebra. The only assumption we made is that the representation is finite-dimensional. In fact, if we are interested
in unitary representations, one can show that these mus be finite dimensional for compact Lie groups and therefore
also for their Lie algebras.

Highest weight construction. The Lie algebra su(2) is three-dimensional and defined via the commutation relations
[Jj , Jk] = iε l

jk Jl. In fact, this is the smallest non-trivial Lie algebra. Since there are no two generators which com-
mute with each other, we can only diagonalize one generator at a time. Given a finite-dimensional representation
ρ on a vector space V with dimension `, we choose to diagonalize the linear operator ρ(J3). Since ρ(J3) is Her-
mitean, the eigenvalues are real. Since dimV <∞, we can choose the eigenstates of ρ(J3) as basis for V such that
there must be a state |j, x〉 whose J3-eigenvalue is maximal, ρ(J3)|j, x〉 = j|j, x〉 and ρ(J3)|j′, x′〉 = j′|j′, x′〉,
j′ ≤ j for all j′. Here, x denotes all further labels which might be necessary to specify states in V . The trick is
that we start with a state with maximal eigenvalue which must exists, since V is finite dimensional.

The next trick is to redefine the other generators. Choosing J± = 1√
2
(J1± iJ2), the commutation relations

read [J+, J−] = J3 and [J3, J
±] = ±J±. In this basis for the generators, the action of J± on |j′, x〉 is easy to

compute: ρ(J3)(ρ(J±)|j′, x〉) = [ρ(J3), ρ(J
±)]|j′, x〉+ρ(J±)ρ(J3)|j′, x〉 = ρ(J±)ρ(J3)|j′, x〉±ρ(J±)|j′, x〉 =

(j′ ± 1)(ρ(J±)|j′, x〉). We see that J± raise or lower the J3 eigenvalue by plus or minus one, respectively.

The immediate consequence is that ρ(J+)|j, x〉 = 0 since j was by definition the maximal possible eigen-
value. This is why |j, x〉 is called a highest weight state and j its highest weight. Other states can be constructed by
using ρ(J−)|j, x〉 = Nj,x|j − 1, x〉. We have seen in the lecture that the normalization Nj,x ≡ Nj is independent
of x. Furthermore, we found that ρ(J+)|j − 1, x〉 = Nj |j, x〉 and that N2

j = j. Finally, states |j′, x〉 and |j′, y〉
are orthogonal to each other for x 6= y. We can repeat this and find states |j−2, x〉, |j−3, x〉 and so on, in general
|j−k−1, x〉 with normalization constantsNj−k, the latter turning out to beN2

j−k = 1
2 (k+1)(2j−k). Renaming

k = j −m, we find the well known formula

Nm =
1√
2

√
(j +m)(j −m+ 1) .

We can use the fact that V has to be finite dimensional once more. It means that we cannot lower the J3 eigenvalue
indefinitely. There must be a state |j − h, x〉 such that ρ(J−)|j − h, x〉 = 0, or equivalently, there must be an
integer h such that the norm of ρ(J−)|j − h, x〉 = 0. Thus, we must have Nj−h = 1√

2

√
(2j − h)(h+ 1) = 0.

Since h ≥ 0, the only solution is h = 2j which implies that j = h/2 ∈ Z+/2. We also observe that all this is
independent of x such that the representation is irreducible only, if there is only one highest weight state and thus
no dependence on x at all. Thus, all finite-dimensional irreps are classified by just one number j ∈ Z+/2, the
highest weight. The dimension of the irrep j is ` = 2j + 1.

Standard notation. In order to label in which irrep we are, we denote the states by |j,m〉 where now j is the highest
weight, and m the actual J3 eigenvalue of the state, ρ(j)(J3)|j,m〉 = m|j,m〉. We also made the irrep explicit in
the notation for the linear operator, ρ(j)(J3). Of course, m ∈ {j, j − 1, . . . ,−j + 1,−j}. The matrix elements of
the linear operators representing the su(2) algebra are now easy to find. Since ρ(J−)|j, j−k〉 = Nj−k|j, j−k−1〉
and ρ(J+)|j, j−k−1〉 = Nj−k|j, j−k〉, we find for the matrix elements

(
ρ(j)(Ja)

)
m′m

= 〈j,m′|ρ(j)(Ja)|j,m〉
the expressions

〈j,m′|ρ(j)(J3)|j,m〉 = mδm′,m , 〈j,m′|ρ(j)(J±)|j,m′〉 =
√

(j ±m+ 1)(j ∓m)/2 δm′,m±1 .

These results can easily be translated to the matrix elements for J1 and J2, since J1 = 1√
2
(J+ + J−) and

J2 = i√
2
(J+ − J−). As examples, we give the matrices for j = 1/2, 1 and 3/2. The spin j = 1/2 irrep is given

by

ρ(1/2)(J1) =
1

2

(
0 1
1 0

)
=

1

2
σ1 , ρ(1/2)(J2) =

1

2

(
0 −i
i 0

)
=

1

2
σ2 , ρ(1/2)(J3) =

1

2

(
1 0
0 −1

)
=

1

2
σ3 .
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Indeed, these matrices are the Pauli matrices satisfying σaσb = δab + iε c
ab σc. This is the defining representation,

since exp(iα · σ) yields precisely all 2× 2 matrices which are unitary and have determinant one. The spin j = 1
irrep is given by the generators

ρ(1)(J1) =
1√
2

 1
1 1

1

 , ρ(1)(J2) =
1√
2

 −i
i −i

i

 , ρ(1)(J3) =

 1
0
−1

 .

This is indeed equivalent to the adjoint representation. To see this, one has to find a similarity transformation
P such that PTaP−1 = ρ(1)(Ja), where (Ta)

c
b = −ε c

ab are the generators in the adjoint representation, Ta =
ad(Ja). The similarity transformation which does the trick is

P =

 1/2 −i/2 0

0 0 −1/
√
2

−1/2 −i/2 0

 .

Finally, the spin j = 3/2 irrep reads

ρ(3/2)(J1) =


√
3/2√

3/2 2

2
√
3/2√

3/2

 , ρ(3/2)(J2) =


−
√
3/2i√

3/2i −2i
2i −

√
3/2i√

3/2i

 ,

and ρ(3/2)(J3) = diag(3/2, 1/2,−1/2,−3/2). We note that an automatic consequence of our construction is that
the states are orthonormal, i.e. 〈j′,m′, x′|j, n, x〉 = δj′jδm′mδx′x where x denotes quantum numbers with respect
to other possible observables.

TENSOR PRODUCTS

Classifying all irreps of a given Lie algebra g is the first step to understand the representation theory of g. The
next step is to study how an arbitrary representation decomposes into irreps. The most common reducible repre-
sentations one encounters in physics are tensor products of irreps. We will see some of what goes on with tensor
products in the well known example of angular momentum addition. The point is that a physical system might
transform in such a way under a symmetry that it carries quantum numbers for different irreps of the symmetry
algebra. For example, a particle with spin s and angular momentum ` can be described with a Hilbert space whose
states have independent quantum numbers with respect to the irrep ρ(`) and the irrep ρ(s) ofmathfraksu(2). The
states can thus be denotes as |`,m〉 ⊗ |s,ms〉 ≡ |`,m〉|s,ms〉 where it is customary to omit the tensor product
symbol. Another common notation is |`,m; s,ms〉.

Transformation properties. To understand how the Lie algebra acts on a tensor product, we have to change notation
for this paragraph. We will denote the representations of the Lie group on vector space V and W by ρV and ρW ,
and in general group representations by ρ. The representations of the corresponding algebra g are denoted by dρV ,
dρW and dρ, respectively. This makes explicit that the linear operators dρ(uaXa) can be thought of as the linear
differentials of the linear operators ρ(g), g = exp(iuaXa).

The group acts in the following way on the vector space V ×W with states |v〉 ⊗ |w〉:

ρV⊗W (g)|v〉 ⊗ |w〉 =
∑
v′,w′

|v′〉 ⊗ |w′〉
(
ρV⊗W (g)

)
(v′w′)(vw)

=

(∑
v′

|v′〉
(
ρV (g)

)
v′v

)
⊗

(∑
w′

|w′〉
(
ρW (g)

)
w′w

)
.

This means nothing else than the statement that the factors of the tensor products states transform independently
under the group action. Now, it is very easy to find how the algebra acts, since dρ acts as derivation for ρ. Thus,
we find(
1l + iuadρV⊗W (Ja)

)
|v〉 ⊗ |w〉 =

∑
v′,w′

|v′〉 ⊗ |w′〉〈v′| ⊗ 〈w′|
(
1l + iuadρV⊗W (Ja)

)
|v〉 ⊗ |w〉

=
∑
v′,w′

|v′〉 ⊗ |w′〉
(
δv′,vδw′,w + iua

(
dρV⊗W (Ja)

)
(v′w′)(vw)

)
=

∑
v′,w′

|v′〉 ⊗ |w′〉
(
δv′,v + iua

(
dρV (Ja)

)
v′v

) (
δw′,w + iua

(
dρW (Ja)

)
w′w

)
.
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To first order in u we thus get what we expect of a derivation:(
dρV⊗W (Ja)

)
(v′w′)(vw)

=
(
dρV (Ja)

)
v′v

δw′,w + δv′,v

(
dρW (Ja)

)
w′w

or simply dρV⊗W (Ja) = dρV (Ja) ⊗ 1lW + 1lV ⊗ dρW (Ja). It is often quite cumbersome to keep track of the
different representations and the explicit notion of the tensor products. Thus, the reader will often find shorter
notations such as

Ja (|v〉|w〉) = (Ja|v〉) |w〉+ |v〉 (Ja|w〉) .

One of the easier things to work out with tensor products are the eigenvalues of the generators which can be
diagonalized. We chose to diagonalize to J3 and the eigenvalues of this generator simply add up:

J3 (|j1,m1〉|j2,m2〉) = (m1 +m2) (|j1,m1〉|j2,m2〉) .

The specific way how the Lie algebra acts on a tensor product is all one needs to decompose the tensor represen-
tation into irreps by applying the highest weight construction to the tensor states and use the derivation property
of the representation. That is exactly the procedure one goes through in quantum mechanics when decomposing,
for instance, the tensor product of a j = 1 and a j = 1/2 representation, starting with the (unique) highest weight
state |3/2, 3/2〉 = |1, 1〉|1/2, 1/2〉. This is left as an exercise.

Tensor operators. It might be helpful at this stage to repeat some stuff from quantum mechanics like tensor operators
and the Wigner-Eckart theorem. A tensor operator O(r) of rank r is simply an operator which transforms in the
spin r irreducible representation, i.e.

[ρ(r)(Ja),O(r)
m ] =

∑
m′

O(r)
m′

(
ρ(r)(Ja)

)
m′m

.

Note that we now go back to use the symbol ρ for a representation of the Lie algebra, instead of dρ. Of course, a
tensor operator has components since otherwise it could not possibly transform according to the spin r representa-
tion. A brief example might help, a particle in a spherically symmetric potential. The angular momentum is given
by La = ε bc

a rbpc. The operators La form a representation of the Lie algebra su(2). Now, the position operator
rb is related to a rank one tensor operator (i.e. a tensor operator transforming in the spin one irrep), because it
transforms under the adjoint representation:

[ρ(Ja), rb] = ε cd
a [rcpd, rb] = −iε cd

a rcδb,d = −iε cd
a rc = rc(Ta)

c
b = rc ad(Ja)

c
b .

Note however, that rb does not transform in the canonical way, since the representation matrices for the ad-
joint representation have not the standard form given above. If we have in general an operator Ob, such that
[ρ(Ja),Ob] =

∑
b′ Ob′ (ρ(Ja))b′b with ρ being equivalent to a spin r irrep, then we can find a matrix S such that

Sρ(Ja)S
−1 = ρ(r)(Ja). We can then use this matrix S to redefine the tensor operator, O(r)

m = Ob(S
−1)bm. This

redefined operator now transforms precisely in the irrep ρ(r), i.e. [ρ(r)(Ja),O(r)
m ] = [Sρ(Ja)S

−1, (OS−1)m] =

Ob′(S
−1) b′

m S c′

b′ (ρ(Ja))c′d′(S−1) d′

m′ = O(r)
m′ (ρ(r)(Ja))m′m. It is often not necessary to find S explicitly. If we

find a linear combinations of the components Ob that is an eigenstate of J3 with eigenvalue r′, then we can take
this as a component of O(r) and construct the other components by applying J±. For the position operator, this is
easy. We know that [ρ(J3), r3] = 0, therefore r3 can be identified with the component r(1)0 . We find the other two
components by simply computing [ρ(1)(J±), r

(1)
0 ] = r

(1)
±1 = ∓(r1 ± ir2)/

√
2.

Wigner-Eckart theorem. Tensor operators have the great advantage that their matrix elements are determined by the
su(2) symmetry up to a constant which is independent of the symmetry (usually this constant is determined by the
dynamics of the physical system under consideration). When a tensor operators O(r)

k acts on a state |j,m〉, the
whole object transforms in the tensor representation ρ(r)⊗(j). Let us denote the coefficients of a base change from
the basis {|r, k〉|j,m〉 : k = −r, . . . , r , m = −j, . . . , j} to the basis {|J,M〉 : J = |r − j|, . . . r + j , M =

−J, . . . J} for the decomposition (r)⊗ (j) =
⊕r+j

J=|r−j|(J) by 〈J,M |r, k; j,m〉, the Clebsh-Gordan coefficients.
These coefficients are entirely determined by the su(2) structure, and can be obtained by applying the highest
weight construction to both bases, using the derivation property of the tensor representation. In essence, they are
determined up to some overall normalization and signs by the two recursion relations√

(j ∓m)(j ±m+ 1)〈j1,m1; j2,m2|j,m± 1〉 =
√

(j1 ∓m1 + 1)(j1 ±m1)〈j1,m1 ∓ 1; j2,m2|j,m〉
+

√
(j2 ∓m2 + 1)(j2 ±m2)〈j1,m1, j2,m2 ∓ 1|j,m〉 ,
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subject to to the condition m1 +m2 = m± 1. Note that we have used here the inverse base change, just because
we like to make things irritating for the reader ;-). Once we know these, the matrix elements of tensor operators
have the simple form

〈J,m′, x′|O(r)
k |j,m, x〉 = δm′,k+m〈J, k +m|r, k; j,m〉 〈J, x′||O(r)||j, x〉 ,

where 〈J, x′||O(r)||j, x〉 is called the reduced matrix element of the tensor operator. It only depends on the irreps
involved, and any remaining dynamical degrees of freedom, denoted here x′ and x, but not on the components,
i.e. the magnetic quantum numbers. Thus it depends neither on the inner structure of the involved irrpes, nor the
particular states in them. This statement is known as the Wigner-Eckart theorem. It is valid for any Lie algebra,
as we will see in due course, but here we have repeated it in the form well known from the theory of angular
momentum and spin in quantum mechanics.

Of course, what we have just said equally applies to products of tensor operators. Such productsO(r)
k O

(r′o)
k′

simply transform in the tensor representation (r)⊗ (r′) and can thus be decomposed into a sum of tensor operators
by again the highest weight procedure. Also, the J3 eigenvalues again simply add up, i.e. we get nothing else
than [ρ(r)⊗(r

′)(J3),O(r)
k O

(r′o)
k′ ] = (k + k′)O(r)

k O
(r′o)
k′ . More generally, the action of the generators Ja of the Lie

algebra su(2) on a product of tensor operators is given as for tensor products of vector spaces, such that,

[ρ(r)⊗(r
′)(Ja),O(r)

k O
(r′)
k′ ] = [ρ(r)(Ja),O(r)

k ]O(r′)
k′ +O(r)

k [ρ(r
′)(Ja),O(r′)

k′ ]

= O(r)
l O

(r′)
k′

(
ρ(r)(Ja)

)
lk
+O(r)

k O
(r′)
l′

(
ρ(r

′)(Ja)
)
l′k′

.

ADDENDUM TO HANDOUT III

We have seen in handout III that the tangent space at any point g of a Lie group G carries the structure of a Lie
algebra. In particular, the tangent space at the identity element, TeG, carries this structure. The abstract Lie algebra
associated to a Lie group is therefore given by the identification g ∼= TeG. Thus, the real dimension of g is equal
to the dimension d of the manifold G. Equivalently, g can be identified with the space of left- or right-invariant
vector fields, and one may interchange the identifications freely.

Universal covering group. One important issue has to be clarified here. The Lie algebra carries almost all of the in-
formation on the Lie group manifold. The only information about a finite-dimensional Lie group G which is lost
when the linearized and purely local information encoded in its Lie algebra g is considered, are properties of topo-
logical and entirely global nature. More precisely, the Lie algebra cannot contain any information that depends
either on the set π0(G) of different connected components of the group manifold, or on the fundamental group
π1(G). In particular, for any simple compact real Lie algebra g, there is a unique compact simple Lie group G̃,
for which the Lie algebra of invariant vector fields is isomorphic to g, and such that G̃ is connected and simply
connected. This means that G̃ has trivial groups π0(G̃) = 0 = π1(G̃). Moreover, one can show that for any
connected Lie group G with the same Lie algebra g there is a surjective Lie group homomorphism ϕ : G̃ −→ G
such that the kernel of ϕ is a subgroup of the center of G̃. This subgroup is then isomorphic to π1(G). The center
of a group G is the subgroup consisting of all those elements h ∈ G which commute with all the elements g ∈ G,
i.e. C(G) = {h ∈ G : hg = gh ∀g ∈ G}. For this reason G̃ is also called the universal covering group associated
with the Lie algebra g.
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