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IRREDUCIBLE REPRESENTATIONS OF A SEMI-SIMPLE LIE ALGEBRA

The method with which we found the finite-dimensional irreps of sl(3,C), or su(3), respectively, can immediately
be generalized to any semi-simple Lie algebra. This yields a procedure in eight steps, which I will sketch here very
briefly. The semi-simple Lie algebra is denoted by g.

[I] Cartan subalgebra. Find the maximal Abelian subalgebra h ⊂ g.

[II] Cartan decomposition. Perform the Cartan decomposition g = h ⊕
(⊕

α∈R gα
)

for the adjoint representation,
where the root spaces gα are defined by the condition

∀H ∈ h,∀X ∈ gα : ad(H)(X) = α(H)X

for α ∈ R ⊂ h∗, the set of the roots of g. We have:
(1) dimgα = 1;
(2) rankg ≡ rankΛR = dimh with ΛR = spanZR the root lattice;
(3) α ∈ R⇐⇒ −α ∈ R.

Let V be a finite-dimensional irrep of g. Perform the Cartan decomposition for V analogously, i.e. decompose
V =

⊕
α∈W (V ) Vα, where the weight spaces Vα are defined by the condition

∀H ∈ h,∀v ∈ Vα : H(v) = α(H) v

for α ∈W (V ) ⊂ h∗, the set of the weights of the representation V . We have:
(1) dimVα = mult(α) in the representation V ;
(2) the root spaces act on the Vα in such a way that gβ : Vα → Vα+β for all β ∈ R. Then, obviously, it is true that
∀α, α′ ∈W (V ) : α− α′ ∈ ΛR.

[III] Root subalgebras. Find for each root α the corresponding subalgebra sα = gα ⊕ g−α ⊕ [gα, g−α] ∼= sl(2,C).
we have:
(1) [gα, g−α] 6= 0, such that [gα, g−α] ⊂ h, dim[gα, g−α] = 1;
(2) [[gα, g−α], gα] 6= 0, so that one can find generators, which satisfy the standard Lie brackets of sl(2,C). In
particular, there exists a Hα ∈ [gα, g−α] with α(Hα) = 2.

[IV] Weight lattice. Make use of the rather simple representation theory of the sα ∼= sl(2,C) in order to construct the
lattice ΛW = {β ∈ h∗ : β(Hα) ∈ Z ∀α ∈ R}, since all eigen values of Hα have to be integers. Obviously, for
any finite-dimensional irrep V is the set of weights W (V ) ⊂ ΛW . In particular, R ⊂ ΛW , therefore ΛR ⊂ ΛW is
a sublattice with finite index.

[V] Weyl group. Use the fact that the weights of representations of sα ∼= sl(2,C) possess a reflection symmetry by
introducing the reflections Wα,

Wα(β) = β − 2
2β(Hα)

α(Hα)
α = β − β(Hα)α ,

which map the hyperplanes Ωα = {β ∈ h∗ : 〈Hα, β〉 = 0} into themselves, and reflect the lines Cα into
themselves, i.e. Wα(α) = −α. The group W generated from the Wα, α ∈ R, is called Weyl group. In particular,
one has that the set of weights of a representation is invariant under the Weyl group, i.e. W(W (V )) = W (V ).

[VI] Killing form. Define the Killing form g(X,Y ) = tr(ad(X) ◦ ad(Y )) as Scalar product on g, thus also on h ⊂ g,
which naturally extends to a scalar product on h∗ ∼= h. The Weyl group is then nothing else than the orthogonal
group, W = O(ΛW ), i.e. g(Wα(β),Wα(β′)) = g(β, β′) for all Wα ∈ W, β, β′ ∈ ΛW ⊂ h∗. With respect to
this scalar product the line Cα and the hyperplane Ωα are orthogonal, i.e. α ⊥ Ωα. The scalar product g(·, ·) is
positive definite on h.

[VII] Highest weights and highest weight vectors. Choose a direction in h∗ by choosing a real linear function ` :
ΛR → R, which divides the roots into two equally sized subsets R = R+ ∪R−. Here, R+ = {α ∈ R : `(α) > 0}
is the set of positive roots, and analogously R− = {α ∈ R : `(α) < 0} is the set of negative roots. For a
representation V of g we call a vector v ∈ V , which is eigen vector to all H ∈ h, and which simultaneously is
in the kernel of all root spaces of the positive roots, a highest weight vector, i.e. v ∈ V is a highest weight vector
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with highest weight or dominant weight α⇐⇒H(v) = α(H) v for all H ∈ h, and gα(v) = 0 for all α ∈ R+. We
have:
(1) Any finite-dimensional representation V of g possesses a highest weight vector;
(2) To any finite dimensional representation V of g with highest weight vector v ∈ V is the subrepresentation
W = span{v, gα(v), gαgα′(v), . . . : α, α′, . . . ∈ R−} ⊂ V irreducible;
(3) Any finite-dimensional irrep V of g has (up to normalization) a unique highest weight vector.

The so-called (positive) primitive or simple roots are those positive roots, which are not the sum of two other
positive roots, i.e.R+

p = {α ∈ R+ : α 6= α′+α′′ forα′, α′′ ∈ R+}. Analogously one defines negative simple roots
R−p . Then, the above definition of W ⊂ V simplifies to W = span{v, gα(v), gαgα′(v), . . . : α, α′, . . . ∈ R−p }.
The (closed) Weyl chamber W is the region in h∗, within which all possible highest weights must reside. It is
defined asW = {α ∈ spanRR : α(Hγ) ≥ 0 ∀γ ∈ R+}. An equivalent definition is as the closure of a connected
component of the complement of the union of the hyperplanes Ωα.

[IIX] Classification of irreps. Now, we have everything in place to completely describe all finite-dimensional irreps of
a semi-simple Lie algebra g.
THEOREM: For any α ∈ W ∩ ΛW there is exactly one finite-dimensional irrep Γα with α its highest weight. Let
C denote the closure of the open convex hull, whose vertices are given by the images of α under the action of the
Weyl group W. Then, the set of weights of the irrep Γα are given by W (Γα) = {β ∈ ΛW ∩ C : β − α ∈ ΛR}.
Let the positive simple roots be labeled in an arbitrary manner as {α1, . . . , αn} = R+

p , n = rankg. Then there
exist weights ωi ∈ h∗, 1 ≤ i ≤ n, such that ωi(Hαj

) = δij . These weights are called fundamental weights. Each
highest weight can be written in a unique way as linear combination α = a1ω1 + . . .+ anωn, where all ai ∈ Z+.
Thus, often the notation Γα = Γa1ω1+...+anωn

= Γa1,...,an is used.

DYNKIN DIAGRAMS

If rankg > 2, it is not very well possible to explicitly draw weight diagrams as we did for su(3). Fortunately,
there is a much more efficient way to graphically denote representations, which has been developed mainly by
Dynkin. I will sketch here briefly, how all (semi-)simple Lie algebras can easily be classified with the help of a
graphical notation, the so-called Dynkin diagrams, which encodes all the information on the Lie algebra. If one
adds, in addition, the numbers a1, . . . an, ai = g(α, αi), then the diagram also encodes all the information about
the representations Γα, where I use the notation from [IIX].

Root systems. Let g be a semi-simple Lie algebra, h its Cartan subalgebra, g its Killing form, etc. The Euclidian space
E = spanRR is a real subvectorspace of h∗, on which g is positive definite. To characterize a Lie algebra, it
suffices to classify the possible root systems R ⊂ E up to rotations and scalar multiplications. A root system has
the properties:
[i] |R| <∞, spanRR = E;
[ii] α ∈ R =⇒ −α ∈ R, and more strictly α ∈ R =⇒ R ∩ {Rα} = {α,−α};
[iii] α ∈ R =⇒Wα : R→ R with Wα the reflection in the α⊥-plane;
[iv] α, β ∈ R =⇒ ηβα = β(Hα) ∈ Z. The quantity ηβα and the Weyl reflection Wα can be expressed via the
Killing form,

ηβα = 2
g(β, α)

g(α, α)
, Wα(β) = β − ηβαα .

Condition [iv] is very restrictive, since it restricts the angle θ between to roots α, β to a very few possibilities.
With cos θ = g(β, α)/

√
g(α, α)g(β, β), it follows that ηβα = 2

√
g(β, β)/g(α, α) cos θ ∈ Z, thus 4 cos2 θ =

ηαβηβα ∈ Z. This leaves only the possibilities 4 cos2 θ ∈ {0, 1, 2, 3, 4}, where the last case 4 cos2 θ = 4 occurs
only in the trivial setting β = ±α. Without loss of generality one can assume that g(β, β) ≥ g(α, α), or |ηβα| ≥
|ηαβ |, respectively. This leads to the following table of non-trivial possibilities:

4 cos2 θ 3 2 1 0 1 2 3

cos θ
√

3/2
√

2/2 1/2 0 −1/2 −
√

2/2 −
√

3/2
θ π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6

ηβα 3 2 1 0 −1 −2 −3
ηαβ 1 1 1 0 −1 −1 −1√

g(β,β)
g(α,α)

√
3

√
2 1 ∗ 1

√
2

√
3
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Let now n = dimRE = dimCh = rankg. Below, all root systems for 1 ≤ n ≤ 3 are sketched:

= sp4C 2G

= so6C

n = 2

n = 3

n = 1

A

A A A B

A B C

1 1 2 2

1

3 3 3

×

= sl

= sl = so

= sl = so = sp4 7

53

2

6

C

C C

CCC

With a suitable but otherwise arbitrary semi-ordering ` : E→ R we divide the roots into two halves,R = R+∪R−.
The positive simple roots for the classical Lie algebras are given in terms of the basic weights Li as follows:

R+
p =


{Li − Li+1 : i = 1, . . . , n} for sl(n+ 1,C) = An ,
{Li − Li+1 : i = 1, . . . , n− 1} ∪ {Ln} for so(2n+ 1,C) = Bn ,
{Li − Li+1 : i = 1, . . . , n− 1} ∪ {2Ln} for sp(2n,C) = Cn ,
{Li − Li+1 : i = 1, . . . , n− 1} ∪ {Ln−1 + Ln} for so(2n,C) = Dn .

The properties [i] to [iv] have immediate consequences, which must be satisfied by root systems R.

[v] For all α, β ∈ R, β 6= ±α, the whole string {β−pα, β−(p−1)α, . . . , β−α, β, β+α, β+2α, . . . , β+qα} ⊂
R must belong to the root system. Since we must also have that Wα(β + qα) = β − pα = (β − ηβαα) − qα, it
follows that p = ηβα + q. This yields the restriction p+ q ≤ 3, p− q = ηβα.
[vi] For all α, β ∈ R, β 6= ±α, it follows with the help of the Killing form that

g(β, α) > 0 =⇒ α− β ∈ R ,
g(β, α) < 0 =⇒ α+ β ∈ R ,
g(β, α) = 0 =⇒ α− β, α+ β either both ∈ R or both 6∈ R ;

[vii] If α 6= β ∈ R+
p are simple positive roots, then α− β 6∈ R, β − α 6∈ R cannot be roots;

[iix] If α 6= β ∈ R+
p are simple positive roots, then the angle between them cannot be sharp, i.e. cos θ =√

g(α, α)/g(β, β)ηβα/2 ≤ 0;
[ix] The simple positive roots are linearly independent;
[x] |R+

p | = n = rankg, such that each α ∈ R+ has a unique decomposition α = a1α1 + . . . + anαn, where
αi ∈ R+

p and ai ∈ Z+.

Dynkin diagrams. Label the positive simple roots in an arbitrary manner, R+
p = {α1, . . . , αn}. It follows from [iix]

that αi, αj ∈ R+
p can only from the angles θ ∈ {π/2, 2π/3, 3π/4, 5π/6}. Correspondingly, ηαi,αj

takes the
values {0,−1,−2,−3}. Draw a graph with one node for each αi, and with exactly ηαi,αj

ηαj ,αi
lines linking the

nodes αi and αj . To make it even more beautiful, draw an arrow on the linking lines from the longer root to the
shorter one, if g(αi, αi) 6= g(αj , αj). One can prove that only the connected graphs listed below correspond to
irreducible root systems which satisfy the properties [i] to [iv] (and therefore also [v] to [x]). These are the Dynkin
diagrams of the semi-simple Lie algebras. This classifies all semis-simple Lie algebras! Furthermore, any irrep
Γα = Γa1,a2,...,an can be completely characterized by a Dynkin diagram by simply denoting the number ai near
the node αi. These coefficients ai were obtained by introducing the fundamental weights ωi with g(ωi, αj) = δij ,
such that obviously ai = g(α, αi). Indeed, any irrep, i.e. its weight diagram including all multiplicities, can be
reconstructed from the Dynkin diagram of the underlying Lie algebra together with the weight coefficients ai. The
Dynkin diagram contains, for instance, all values of the so-called Cartan matrix ni,j ≡ ηαi,αj

. In the diagrams
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below, the labeling goes from left to right following the lists for R+
p = {α1, . . . , αn} given earlier in the text for

the classical groups, and further below for the exceptional ones.
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Finally, I make some comments regarding the restrictions concerning the minimal rank for Lie algebras in the
series A,B,C,D. These restrictions avoid that the same graph appears multiple times in different series.
For n = 1 we find B1 = C1 = A1, which corresponds to the isomorphies so(3,C) ∼= sp(2,C) ∼= sl(2,C). All
these Dynkin diagrams consist of just one single node. The case D1 = so(2,C) must be excluded, because this
Lie algebra is not semi-simple.
For n = 2 we find D2 = A1 × A1 corresponding to the isomorphy so(4,C) ∼= sl(2,C) × sl(2,C). The Dynkin
diagrams consist out of two disjunct nodes without a joining line. Further, we find C2 = B2 corresponding to the
isomorphy sp(4,C) ∼= so(5,C). The associated Dynkin diagrams are equal, since the direction of the arrow on the
linking line is irrelevant in the case of just two nodes.
For n = 3 we finally find D3 = A3 corresponding to the isomorphy so(6,C) ∼= sl(4,C).
If one wishes, one can successively eliminate nodes from right to left to formally obtain the equivalencesE5 = D5,
E4 = A4, E3 = A2 ×A1, E2 = A1 ×A1 and E1 = A1.

The root systems for the exceptional Lie algebras read as follows:

R+
p =


{L1,− 3

2L1 +
√
3
2 L2} für G2 ,

{L2 − L3, L3 − L4, L4,
1
2 (L1 − L2 − L3 − L4)} für F4 ,

{ 12 (L1 − L2 − L3 − L4 − L5 +
√

3L6), L1 + L2, } ∪ {Li+1 − Li : i = 1, . . . , 4} für E6 ,

{ 12 (L1 − L2 − . . .− L6 +
√

2L7), L1 + L2} ∪ {Li+1 − Li : i = 1, . . . , 5} für E7 ,
{ 12 (L1 − L2 − . . .− L7 + L8), L1 + L2} ∪ {Li+1 − Li : i = 1, . . . , 6} für E8 .
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