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SUBGROUPS

Nature has the habit to very often realize symmetries not perfectly. Probably, this is why the universe is so beautiful
and why it would be unbearable boring otherwise. Thus, having found a large symmetry group, a good question
in physics is to look for its subgroups. One of the prime examples for this is the search for GUTs (grand unified
theories). These theories have a large gauge group G nut are valid only at very high energies, e.g. at the first
few moments of the universe. Later, when the average available energy in a cooling universe decreased, this
large gauge symmetry which unifies all known fundamental forces, somehow gets broken to the direct product
U(1)× SU(2)× SU(3) ⊂ G of the gauge groups we know today. The first factor stands for the gauge theory of
electromagnetism, which is an Abelian gauge theory of one gauge boson, the photon. The second factor describes
weak interactions via the intermediate vector bosonsW± and Z. Finally, the last factor represents the gauge group
of quantum chromodynamics, the strong interaction of gluons acting between the quarks. But how can we find out,
which subgroups a given Lie group contains?

Regular subalgebra. Given a simple Lie algebra g, a regular subalgebra p is a subalgebra such that the roots α of p are
a subset of the roots of g and the generators of the Cartan subalgebra of p are linear combinations of the Cartan
generators of g. A regular subalgebra is called maximal, if rank p = rank g. Of course, the Cartan subalgebras
are identical in this case which means that the maximal set of simultaneously commuting observables remains the
same.

Subalgebras from Dynkin diagrams. Given a Dynkin diagram for a simple Lie algebra g, we can leave out a node
together with the lines connected to it. This inevitably will split the Dynkin diagram into two new diagrams.
These are then associated with a regular subalgebra of the original algebra g which, however, is not semi-simple.
The subalgebra has a subset of the roots of the original algebra, but we also lost one generator from the Cartan
algebra. By removing a node, the rank of the subalgebra is reduced by one, and the simple roots are a subset of
the original simple roots. On the level of the groups, we thus find G = G1 × G2 × U(1), where the additional
U(1) factor comes from the left out Cartan generator. For example, SU(n + m) can be reduced in this way into
SU(n)×SU(m)×U(1). This is the classical ansatz for a GUT: SU(5) gets broken into SU(3)×SU(2)×U(1).

There are other regular subalgebras, which cannot be obtained by leaving out a node. These can be found
with the help of the merging procedure which we used in the lecture to prove the classification theorem. Thus,
SU(n) naturally contains SU(k), k < n, as regular subalgebras. Another nice merging yields that SO(2n)
contains an Sp(2n) subalgebra, by merging the branch of the Dn Dynkin diagram to a double line connecting to a
(longer!) new root in the Cn diagram.

Extended Dynkin diagrams. As just explained, these subalgebras all have a smaller rank than the original algebra.
There is, however, an elegant way to obtain all the semi-simple maximal regular subalgebras. Let us define the so-
called lowest root α0 by the property that α0−αj is not a root for all simple roots αj , j = 1, . . . , r = rank g. That
implies that 2(α0 · αj)/(α0)2 and 2(α0 · αj)/(αj)2 are non-positive integers for all simple roots αj . Therefore,
the system {αj : j = 1, . . . r} ∪ {α0} of vectors satisfies all the conditions for a Π-system (root system) except
that there is now one linear relation among the vectors. Such a Π-system is called an extended Π-system, to
which belongs an extended Dynkin diagram. If we now remove a node from an extended Dynkin diagram, the
resulting corresponding set of vectors will again be linearly independent. These roots still satisfy the master
formula. However, the Dynkin diagram might be disconnected, so the root system might be decomposable. Thus,
we will obtain the simple roots of a maximal regular subalgebra of the original algebra, but this subalgebra may be
semi-simple instead of simple. It is maximal, since we now have as many nodes as the original algebra’s Dynkin
diagram had, so the ranks must be equal.

In the proof of the classification theorem, we already encountered all the root systems which satisfied all
conditions but linear independence. Thus, we already know how the lowest root α0 then looks, and in fact, the
lowest root can be computed explicitly for all Dynkin diagrams. Thus, to each Dynkin diagram exists a unique
extended Dynkin diagram. The following table lists all the Dynkin diagram to the left together with their extended
version to the right. The extended Dynkin diagram to the Lie algebra X is denoted by X̂ . The additional node
for the lowest root α0 is explicitly indicated. Note a few exceptions: Â1 = B̂1 = Ĉ1 cannot be extended without
introducing an additional notation, since the lowest root for su(2) with simple root α is simply −α. Thus, the
angle π between two roots, which so far could never appear, is denoted by a link out of four lines. Exercise: How
should D̂2 look like? Remember that D2 = so(2) ⊕ so(2) is not semi-simple. Finally, B̂2 and D̂3 do not have
extension as indicated for B̂n and D̂n, respectively, since the number of nodes is too small. If we would extend in
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the indicated manner, we would be led to forbidden diagrams such as a branch directly attached to a double line.
The correct extended diagrams are then given by B̂2 = Ĉ2 and D̂3 = Â3, respectively.
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Maximal subalgebras. The recipe to obtain maximal semi-simple regular subalgebras is then simple: Take the extended
Dynkin diagram and remove one node from it. The first thing one notices is that An = su(n + 1) does not have
any non-trivial maximal semi-simple regular sublagebras, because removing any node from Ân just takes us back
to An, so nothing interesting here.

The case Bn = so(2n + 1) is more interesting. Removing a node from the left end of B̂b just gives back
Bn, but removing the node at the right end yields Dn. So, this tells us that SO(2n + 1) contains an SO(2n)
subgroup as maximal regular subgroup. Finally, we can remove a node somewhere from the inside to obtain
SO(2k)×SO(2n− 2k+ 1). Of course, you can continue this procedure for the factors to break this group further
down.

The case Dn = so(2n) is less interesting, since removing nodes from either end of D̂n just gives back Dn.
Removing a node from the inside simply yieldsDk⊕Dn−k corresponding to the subgroup SO(2k)×SO(2n−2k).

In a similar way, we obtain for Cn = sp(2n), that removing a node from either end of Ĉn simple gives
back Cn. Removing any node corresponding to a shorter root from the middle simply breaks Cn into Ck ⊕Cn−k.
Removing the first or last of the shorter roots yields instead A1 ⊕ Cn−1 which is just the same since A1 = C1 =
su(2). Thus, the nontrivial subgroups are Sp(2k)× Sp(2n− 2k).

Our special friend G2 is so small, that we easily can list all its maximal regular subalgebras. Removing the
node from the left end of Ĝ2 gives back G2. Deleting the node from the right end gives us A2 = su(3). Finally,
taking out the middle node gives SU(2)× SU(2).

The exceptional algebra F4 possesses a B4 subalgebra by removing the shorter root at the right end op F̂4.
Removing the other shorter root instead gives A1 ⊕ A3. Going further to the left, the next root we could delete is
a longer root right in the middle of the diagram, which would yield A2 ⊕ A2. Removing the penultimate node to
the left we get C3 ⊕A1, and finally deleting the node at the left end just gives back F4.

GRAND UNIFIED THEORIES

Some small remarks about GUTs. We have already seen that the broken symmetry group SU(3)×SU(2)×U(1)
is naturally contained in SU(5) via A4 → A2 ⊕ A1. However, if one investigates this in detail, one finds that
parity symmetry gets lost in SU(5) in a phenomenologically unsatisfactory manner. In the same way, we can
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take B4 = so(9) and cut out the penultimate node to the right, B4 → A2 ⊕ A1. However, the relative lengths
of the roots from A2 then differ from the ones in A1. There are other reasons why SO(9) does not make a good
gauge group for a unified theory. What happens is that the representations of the larger group do not contain
the representations of the broken direct product group in a useful manner to easily yield the low energy particle
spectrum we actually observe. This rules out C4 = sp(8) as well. However, we can take SO(10). The Lie
algebra is D5, which can be broken into A4 by removing one node of the branched end of its Dynkin diagram.
However, removing a node from the middle of its extended Dynkin diagram gives the phenomenological interesting
maximal subgroup SU(4)×SU(2)×SU(2) ∼= SO(6)×SO(4). Thus, we get back our SU(5) as a subalgebra of
SO(10). Note, that SU(5) is a maximal subgroup of SO(10). In comparison, the maximal subgroups of SO(9)
are SO(8) or SO(9 − 2k) × SO(2k). Unification with SO(10) works quite nicely, since the SU(4) contains a
color SU(3) subgroup. The weak interaction is given by one of the SU(2) subgroups. It turns out that together
with the other SU(2) factor, the particle spectrum becomes completely symmetric with respect to chirality and
the weak interaction (which we know does not conserve parity!). In particular, it contains the as yet unobserved
right-handed neutrino. The problem with all such unifying theories is to find an explicit description, how the
symmetry breaking works in such a way that all the unobserved particles become extremely heavy. One can go
on in this manner and look for even larger unifying algebras. It is interesting that the chain E6 → D5 = E5 =
so(10)→ A4 = E4 = su(5) works, but cannot be continued to containE7 andE8 as well, since the latter algebras
do not yield any sensible unified theories. The interesting point about E6 is that it contains a maximal subgroup
SU(3) × SU(3) × SU(3). This is very attractive to get a hierarchical way of symmetry breaking. First, at very
high energies, we break down to the three SU(3) factors. At lower energies, two of the factors are further broken
down to SU(2)× U(1) which at our every-day-energies gets broken down to pure electromagnetism U(1).

Electroweak interaction SU(2) × U(1). One major motivation to search for unifying gauge groups is the problem of
charge quantization. Electromagnetism is a U(1) gauge theory. The problem is that U(1) does not yield a discrete
spectrum of quantum numbers. In principle, any value q for the charge of a particle is possible. Furthermore, the
U(1) factor in the standard model commutes with the other gauge groups, the color SU(3) and the SU(2). If this
direct product of gauge groups were a subgroup of a simple Lie group, then all its representations had to fit into the
representations of this larger group. But simple Lie groups have the wonderful property that the weights of all the
states of any representation are quantized according to the discrete points on the weight lattice. And these weights
are the quantum numbers of the states with respect to the maximal set of commuting observables, the Cartan
algebra. So, unifying with a simple Lie algebra would enforce that charge had to be quantized as well. This would
then solve the puzzle that the charges of the leptons and the charges of the quarks are so closely related to each
other, although they belong to completely different representations with respect to SU(2) × U(1). We conclude
this handout with a very brief tour through the concept of unification, where we take SU(5) as an example.

The Glashow-Salam-Weinberg model of electroweak interaction uses SU(2) × U(1) as unifying gauge
theory. If we restrict ourselves to one generation of particles, this theory contains the following seven right-handed
particles (note that all particles are assumed to be massless so that helicity is a relativistically conserved quantity,
the handedness): u, d, e−, ū, d̄, e+, ν̄e. There is no right-handed neutrino due to the parity-violating nature of the
weak interaction. To ease notation, we will denote the electron by e, the positron by ē and the electron anti-neutrino
by ν̄. Since color commutes with the electroweak interaction, we don’t have to bother with color indices for the
quarks yet. Under the electroweak interaction, (ē, ν̄) transform as a doublet, i.e. in a spin 1/2 representation.
Thus, the corresponding creation operators for these particles, denotes p† for particle p, can be arranged as the
components of an irreducible tensor with respect to SU(2), such as ¯̀†

1 = ē† and ¯̀†
2 = ν̄†. The same is true for

the (d̄, ū) anti-quarks, which we can collect as ψ̄†1 = d̄† and ψ̄†2 = ū†. Let us denote the generators of SU(2) by
Xa, and the generator of the U(1) by S. One finds the following commutation relations between the gauge group
generators and the particle creation operators:

[Xa, u†] = 0, [Xa, d†] = 0, [Xa, e†] = 0, [Xa, ψ̄†j ] = + 1
2 ψ̄
†
k(σa)kj , [Xa, ¯̀†

j ] = + 1
2

¯̀†
k(σa)kj ,

[S, u†] = + 2
3u
†, [S, d†] = − 1

3d
†, [S, e†] = −e†, [S, ψ̄†j ] = − 1

6 ψ̄
†
j , [S, ¯̀†

j ] = + 1
2

¯̀†
j .

Thus, all the particles transform as tensors, either as singlets or as doublets. The annihilation operators for the right-
handed particles are given by the adjoints of their creation operators. Therefore, they transform in the complex
conjugate representation, such that, in particular, all S eigenvalues change sign. The creation operators of the left-
handed particles transform exactly as the annihilation operators of their right-handed anti-particles. Furthermore,
the operator for the electric charge is given by Q = X3 + S such that

[Q, u†] = +
2

3
u†, [Q, d†] = −1

3
d†, [Q, e†] = −e†, [Q, ū†] = −2

3
ū†, [Q, d̄†] = +

1

3
d̄†, [Q, ν̄†] = 0.

The idea of any gauge theory is now that the generators (i.e. the particles from the adjoint representation of the
gauge group’s Lie algebra) are associated with the force particles. Thus, the three Xa generators are the three
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intermediate vector bosons W a, and the generator S is often denoted X in the electroweak model. Only one linear
combination, namely W 3 +X = Q, remains a massless force particle, namely the photon, the other particles, the
W± = W 1 ± iW 2 and Z = W 3 −X are responsible for the weak interaction. These latter three acquire heavy
masses due to the Higgs mechanism which also breaks the SU(2) × U(1) model down to the embedded U(1)
symmetry of electromagnetism. This mechanism then also manages to make the weak interaction short ranged due
to the masses of its gauge bosons. The mass for the gauge bosons is not the only thing the Higgs mechanism is
needed for. Without it, the electron and the quarks would be massless as well, since only for massless particles is
a parity violating interaction consistent with relativity. What the Higgs mechanism does is essentially to create a
vacuum state of the theory which is non-trivial, i.e. not just a singlet of SU(2) × U(1). Only the U(1) symmetry
via Q is left by this spontaneous symmetry breaking, under which the vacuum state is a singlet.

Higgs mechanism. We will sketch the Higgs mechanism very briefly here. Suppose that there exists an additional
scalar and Lorentz-invariant field. Such a field can have a non-zero expectation value in the vacuum state without
breaking Lorentz-invariance. If this field now transforms non-trivially under SU(2) × U(1), a non-zero vacuum
expectation value leads to spontaneous symmetry breaking. In fact, a Higgs field φ transforming as a doublet under
SU(2) and with S = 1

2 does the trick,

[Xa, φ†j ] = +
1

2
φ†k(σa)kj , [S, φ†j ] = +

1

2
φ†j .

If such a field exists, it may interact with itself. This interaction can be described by a potential V (φ), which
simply is the energy stored in a constant φ field. The potential should be invariant under SU(2)×U(1) in order to
construct a physical vacuum state, so V (φ) is actually a function of φ†φ only. The lowest energy state corresponds
to the minimum value of V (φ). It can now happen, e.g. for V (φ) = λ(φ†φ − v)2, that the minimum of V is
exhibited not for φ = 0, but for 〈φ†φ〉 = v2 for λ > 0. We could thus take the vacuum expectation value of
φ as 〈φ1〉 = 0, 〈φ2〉 = v. This choice implies that [Q,φ]|〈φ†φ〉=v2 = 0 such that the particular subgroup of
SU(2) × U(1) associated to electromagnetism (generated by Q = X2 + S) is not broken by the Higgs field.
However, any other linear combination of generators of SU(2)×U(1), acting on φ, yields a non-zero result. This
means that these generators are all spontaneously broken and correspond to transformation of the physical vacuum
state to an unphysical one. The precise form of the unbroken part of the symmetry depends on our choice for
φ, but any other choice satisfying 〈φ†φ〉 = v2 yields the same physics, since it is related via an SU(2) × U(1)
transformation to our initial choice. The matter particles (electron and quarks) get mass from the Higgs as well.
The rule of thumb is that a Higgs field can produce mass for a spin 1/2 particle if the tensor product of the
representation of the right-handed particle with the representation of the corresponding anti-particle contains the
representation of the Higgs field (or its complex conjugate). In quantum field theory, this rule of thumb implies
that an SU(3)× SU(2)×U(1) invariant action can be written down, which involves the Higgs field as well as all
particle creation and annihilation operators, that becomes a pure mass term when the Higgs field is replaced by its
vacuum expectation value.

Example: Unifying with SU(5). Let us finally turn to the question of unification. The SU(2) × U(1) symmetry for
the electroweak interaction is a partial unification of the weak and electromagnetic interactions. A search for full
unification of this theory within a simple Lie group failed until the strong interaction of color was incorporated
as well via an SU(3) gauge theory – quantum chromodynamics – whose generators we denote by T a. A particle
creation operator a†rj transforms according to a representation (ρ, %)s of SU(3)× SU(2)× U(1), if it satisfies

[T a, a†rj ] = a†sj(ρ(T a))sr, [Xa, a†rj ] = a†rk(%(Xa))kj , [S, a†rj ] = s a†rj .

Thus, r is a color SU(3) index associated with the SU(3) representation ρ, and j is an SU(2) index associated
with the SU(2) representation %. Our choice Q = X3 + S implies that s is simply the averaged electromagnetic
charge of the full representation, since trQ = trX3 + trS = trS, because the trace of each SU(2) generator
vanishes (the quantum numbers of SU(2) are symmetric with respect to the origin). Denoting the representations
ρ and % by their respective dimensions, we identify the particle creation operators for the right-handed ones as
members of the representations

u† : (3,1)+ 2
3
, d† : (3,1)− 1

3
, e† : (1,1)−1, ψ̄

† : (3̄,2)− 1
6
, ¯̀† : (1,2)+ 1

2
.

Thus, the full SU(3)×SU(2)×U(1) representation, in which the right-handed particle’s creation operators reside,
together with the one for the left-handed fields are thus

(3,1)+ 2
3
⊕ (3,1)− 1

3
⊕ (1,1)−1⊕ (3̄,2)− 1

6
⊕ (1,2)+ 1

2
, (3̄,1)+ 2

3
⊕ (3̄,1)− 1

3
⊕ (1,1)−1⊕ (3,2)− 1

6
⊕ (1,2)+ 1

2
.
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The latter is the complex conjugate of the former, where we made use of the fact that the singlets are always real
representations, as is the SU(2) double representation, 2̄ = 2. The two representations above are not the same, so
the representation is complex, which stems from the parity violating nature of the electroweak interaction.

To find a unifying theory, we have to find a gauge group G which contains SU(3) × SU(2) × U(1) as a
subgroup, and which possesses a representation which transforms under this subgroup precisely as given above.
The rank of G must be at least four such that it can contain T 3, T 8, X3 and S in its Cartan algebra. The simplest
possibility is indeed the rank four group SU(5). In fact, the other simple rank four groups do not work, because
they do not have complex representations. The algebra su(5) has two five-dimensional representations 5 and 5̄,
which are the fundamental representations (1, 0, 0, 0) = [1] and (0, 0, 0, 1) = [4], respectively (for this notation, see
the seminar on Young tableaux). Since 5 is complex, these two are not equivalent. There exists an SU(2)× U(1)
subgroup of SU(5) such that the 5 transforms as a five dimensional subset of the creation operators, namely
(3,1)− 1

3
⊕ (1,2)+ 1

2
. The other five-dimensional subset (3,1)+ 2

3
⊕ (1,2)+ 1

2
cannot work, since the generator S

is not realized traceless on it. This implies that S cannot be a generator of SU(5) at all. It is indeed possible to
embed SU(3)×SU(2)×U(1) in SU(5) to obtain the above five-dimensional representation, namely by taking the
SU(3) generators to be traceless matrices acting on the first three indices in the 5,

(
Ta 0
0 0

)
, and by taking the SU(2)

generators to be traceless matrices acting on the last two indices,
(
0 0
0 Xa

)
. Then S is the generator that commutes

with both of these, given by diag(− 1
3 ,−

1
3 ,−

1
3 ,

1
2 ,

1
2 ). Thus, we can collect the d† and ¯̀† creation operators into

an SU(5) 5 representation λ†j as follows:

λ†j = d†j for j = 1, 2, 3 , λ†4 = ¯̀†
1 = ē† , λ†5 = ¯̀†

2 = ν̄† .

We are left with (3,1)+ 2
3
⊕(1,1)−1⊕(3̄,2)− 1

6
. This representation is ten-dimensional. Fortunately, the other two

fundamental representations of SU(5) are ten-dimensional, 10 = (0, 1, 0, 0) = [2] and 10 = (0, 0, 1, 0) = [3]. In
fact, 10 = 5∧5 is an anti-symmetric tensor product of two 5 representations, which we could use to identify how
it transforms under SU(3) × SU(2) × U(1). The SU(3) and SU(2) representations decompose as discussed in
the seminar, the S quantum numbers simply add:[

(3,1)− 1
3
⊕ (1,2)+ 1

2

]
∧
[
(3,1)− 1

3
⊕ (1,2)+ 1

2

]
=
[
(3̄,1)− 2

3
⊕ (1,1)+1 ⊕ (3,2)+ 1

6

]
.

This is the complex conjugate of our proposal, so we actually want the 10 of SU(5). We can fill in the remaining
right-handed fermion creation operators in this SU(5) representation, anti-symmetric in two upper indices (since
we used lower indices so far),

ξab† = εabcu†c , ξ
a4† = ψ̄a†2 = ūa† , ξa5† = ψ̄a†1 = d̄a† , ξ45† = e† .

where the indices a, b, c ∈ {1, 2, 3} and where ξjk† = −ξkj†. This is the standard SU(5) unified model, where
the creation operators for all right-handed particles transform in the representation 5⊕ 10. Of course, the creation
operators for the left-handed particles transform then in the complex conjugate representation 5⊕10. As one sees,
it is quite a non-trivial thing that the content of the representations fits so nicely with the observed particles.

Consequences. Having identified a potential candidate unifying theory, the next step is to explain how it is actually
broken down to the symmetry we observe nowadays. The Higgs mechanism can do this for us, and there is one
particular simple solution for this. One can show that in the adjoint representation, the 24, the S generator has
just the properties of the vacuum expectation value of the Higgs field. That is similar to the so-called hypercharge
generator in the adjoint representation of SU(3), which commutes with isospin. The U(1) generators S in SU(5)
commutes with all the generators of the SU(3)×SU(2)×U(1) subgroup. Thus, taking the adjoint representation
24 with a vacuum expectation value for the Higgs in the direction of S (there are physically inequivalent directions
for the vacuum expectation value of the Higgs field in SU(5), and one can show that the direction of S is an
admissible value) indeed leads to the desired symmetry breaking. Next, the Higgs field should also be responsible
to give the leptons and the quarks their masses. This can happen, if the Higgs couples to the fermions. In turn,
this can be the case when its representation (or its complex conjugate) appears in the tensor product of the SU(5)
representations of the fermion in question and its anti-particle, respectively. Furthermore, the Higgs representation
must have a component that transforms under SU(3) × SU(2) × U(1) like the Higgs field of this model (or its
complex conjugate).

Now, the right-handed positron ē and the d quark reside in the 5, while their anti-particles, the electron e
and the d̄ quark, live in the 10. As an exercise, perform the Clebsh-Gordan decomposition of 5 ⊗ 10 in SU(5),
which gives 5⊕45. Using the Young notation, this is [1]× [3] = [4]⊕ [3, 1]. The hard work is to show that the two
irreps on the right hand side do indeed contain components with respect to SU(3)×SU(2)×U(1) with the correct
properties to represent the Higgs field. The 5, for example, contains the (1,2)+ 1

2
. The theory has now a chance
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to produce a mass term for the electron and the d quark, since the action can contain a term involving the Higgs
field and the particle creation and annihilation operators. This argument is in complete analogy to our study of the
dipole matrix elements for electrons in crystals with octahedral symmetry, where we asked for the irreps which
couple via the dipole operator. These were just these with non-vanishing matrix elements. A necessary condition
for a matrix element to be non-vanishing is that the involved three irreps (for the bra- and ket-state as well as the
operator) are linked together by a tensor product of two of them yielding the third. Here, the mass for the electron
and d quark can arise from both, the 5 or the 45. The right-handed u quark and its anti-particle ū both reside in
the 10. Now, [3] ⊗ [3] = [1] ⊕ [4, 2] ⊕ [3, 3] = 5 ⊕ 45 ⊕ 50. It turns out that the last irrep, the 50 does not give
rise to a mass term from the Higgs field, since it does not contain a component transforming like (1,2)± 1

2
under

SU(3)× SU(2)× U(1).

Another consequence worth mentioning of unified theories is that certain particles can decay which are
stable in the broken theory. The prime example of this is proton decay. The point is that in the SU(5) theory, all
the quarks, anti-quarks and the electron appear in the same irrep. Thus, SU(5) admits interactions which do not
conserve baryon number. It can happen, when two quarks in a proton interact with each other via the Higgs field.
If the vacuum expectation value of the Higgs is very large (as it presumably is, since the Higgs seems to be a very
heavy particle not yet identified in accelerators), the interaction is extremely short ranged and the decay probability
is very small. One can actually predict on theoretical grounds and the experimentally observed differences between
the color SU(3), the electroweak SU(2) and the U(1) forces, how large the vacuum expectation value of the Higgs
field should be, and derive from it an average proton live time. Experiments are conducted to look for decaying
protons. None were observed so far which pushed the current value of the average proton live time beyond anything
one could realize with a standard SU(5) unified theory, which therefore has to be considered as ruled out. Thus,
theorists are looking for other Lie group candidates for unifying theories, or try completely new concepts such as
supersymmetry. In fact, supersymmetric SU(5), SO(10) or E6 models are still very hot candidates for unifying
theories. One beautiful side effect of supersymmetry is that the energy scales, where unification actually takes
place, becomes the same for strong and electroweak interaction. However, this alone is no proof of the existence
of supersymmetry, although it is highly suggestive.

There are many interesting questions to ask, and there are many things left unexplained here, since they
would require a detailed study of the fundamental and adjoint representations (at least!) of the mentioned algebras
in order to find the particle spectrum. Most difficult is always the question how the symmetry breaking actually
takes place, and where the particles do get their mass from, as sketched for the SU(5) case. The latter question
can only partially be answered by the Higgs mechanism. Unification would solve other problems which need
explanation, such as the origin of charge quantization. This is, by the way, one of the reasons why SO(10) looks
promising, since its maximal subgroup SU(4)×SU(2)×SU(2) is the smallest semi-simple Lie group containing
SU(3)×SU(2)×U(1). Breaking symmetry this way would yields charge quantization for free. The reader might
now have reached a point where she can appreciate the beauty and the power of symmetries (and their imperfect
realization!) in physics. Next term, a seminar on Lie groups in elementary particle physics, supervised by me,
should put these symmetries to use in order to explain from which elementary particles and fundamental forces our
world is made of. So, please stay tuned.
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