GOOD AND BAD PARAMETRIZATIONS

Let G be a Lie group with parametrization u such that g(u = 0) = 1. The dimension of the Lie group is n. The parametrization u can then, for small $|u| \ll 1$, be chosen out of an open subset of \mathbb{R}^n .

Example 1. Let us consider rotations in \mathbb{R}^2 . These form a matrix Lie group, more precisely the matrices $g \in Mat(2, \mathbb{R})$, which satisfy $g^{-1} = g^t$ and det g = 1. This matrix Lie group is called SO(2). What is the dimension of this group? We chose the parametrization

$$g(u) = \begin{pmatrix} \cos(u) & \sin(u) \\ -\sin(u) & \cos(u) \end{pmatrix}, \quad u \in (-\pi, \pi) \subset \mathbb{R}.$$

Show that g(0) = 1. Find the group law, i.e. the function w(u, v), such that $g(w(u, v)) = g(v) \circ g(u)$. Is there an interesting observation you can make?

Example 2. We once more consider SO(2). Now chose the following parametrization:

$$g(u) = \begin{pmatrix} 1-u & \sqrt{1-(1-u)^2} \\ -\sqrt{1-(1-u)^2} & 1-u \end{pmatrix}, \quad u \in (0,2) \subset \mathbb{R}.$$

Check that g(0) = 1, det g(u) = 1 and $(g(u))^{-1} = (g(u))^t$. Derive again the group law w(u, v) for the group multiplication $g(w(u, v)) = g(v) \circ g(u)$. Consider first $(g)_{11}$. Check whether this is compatible in a simple way with the result which you get for $(g)_{12}$. Obviously, this is not a particularly suitable parametrization of this group.

GENERATORS

Next, we consider the group SU(2), i.e. the matrix Lie group of matrices $g \in Mat(2, \mathbb{C})$ with det g = 1 and $g^{-1} = g^{\dagger}$. We already know from Tutorial I, that dim SU(2) = 3.

Parametrization. Show, that with $u = (\phi, \alpha, \beta)$ and $\gamma = \sqrt{1 - \alpha^2 - \beta^2}$ as abbreviations

$$g(u) = \begin{pmatrix} \gamma \cos \frac{\phi}{2} - i\gamma \sin \frac{\phi}{2} & -i(\alpha - i\beta) \\ -i(\alpha + i\beta) & \gamma \cos \frac{\phi}{2} + i\gamma \sin \frac{\phi}{2} \end{pmatrix}$$

yields a good parametrization. We now wish to find the group law $w^k = w^k(u, v)$, at least rudimental.

Generators. Determine the three generators

$$X_1 = \frac{\partial}{\partial \phi} g(u) \Big|_{u=0}$$
, $X_2 = \frac{\partial}{\partial \alpha} g(u) \Big|_{u=0}$, $X_3 = \frac{\partial}{\partial \beta} g(u) \Big|_{u=0}$.

Conversely one has $\exp(-i\frac{\phi}{2}\vec{n}\cdot\vec{\sigma})$ with

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ for all ϕ and $\vec{n} = (\alpha, \beta, \gamma)$ an element of SU(2). Moreover, we have

$$\exp\left(-\mathrm{i}\frac{\phi}{2}\vec{n}\cdot\vec{\sigma}\right) = \cos\frac{\phi}{2}\mathbf{1} - \mathrm{i}\sin\frac{\phi}{2}\vec{n}\cdot\vec{\sigma}\,.$$

Algebra. Determine the structure constants of the Lie algebra of the generators σ_k of SU(2). To do so, you have to compute the commutators $[\sigma_j, \sigma_k] = if_{jk}^{\ l} \sigma_l$. Result: $f_{jk}^{\ l} = 2\varepsilon_{jk}^{\ l}$. With this you can write down the group law in a first order approximation: $w^l(u, v) = u^l + v^l - \frac{1}{2}u^j v^k f_{jk}^{\ l}$.