Good and bad parametrizations

Let G be a Lie group with parametrization u such that $g(u=0)=11$. The dimension of the Lie group is n. The parametrization u can then, for small $|u| \ll 1$, be chosen out of an open subset of \mathbb{R}^{n}.

Example 1. Let us consider rotations in \mathbb{R}^{2}. These form a matrix Lie group, more precisely the matrices $g \in \operatorname{Mat}(2, \mathbb{R})$, which satisfy $g^{-1}=g^{t}$ and det $g=1$. This matrix Lie group is called $S O(2)$. What is the dimension of this group? We chose the parametrization

$$
g(u)=\left(\begin{array}{rr}
\cos (u) & \sin (u) \\
-\sin (u) & \cos (u)
\end{array}\right), \quad u \in(-\pi, \pi) \subset \mathbb{R}
$$

Show that $g(0)=11$. Find the group law, i.e. the function $w(u, v)$, such that $g(w(u, v))=g(v) \circ g(u)$. Is there an interesting observation you can make?

Example 2. We once more consider $S O(2)$. Now chose the following parametrization:

$$
g(u)=\left(\begin{array}{rr}
1-u & \sqrt{1-(1-u)^{2}} \\
-\sqrt{1-(1-u)^{2}} & 1-u
\end{array}\right), \quad u \in(0,2) \subset \mathbb{R}
$$

Check that $g(0)=1$, det $g(u)=1$ and $(g(u))^{-1}=(g(u))^{t}$. Derive again the group law $w(u, v)$ for the group multiplication $g(w(u, v))=g(v) \circ g(u)$. Consider first $(g)_{11}$. Check whether this is compatible in a simple way with the result which you get for $(g)_{12}$. Obviously, this is not a particularly suitable parametrization of this group.

Generators

Next, we consider the group $S U(2)$, i.e. the matrix Lie group of matrices $g \in \operatorname{Mat}(2, \mathbb{C})$ with det $g=1$ and $g^{-1}=g^{\dagger}$. We already know from Tutorial I, that $\operatorname{dim} S U(2)=3$.

Parametrization. Show. that with $u=(\phi, \alpha, \beta)$ and $\gamma=\sqrt{1-\alpha^{2}-\beta^{2}}$ as abbreviations

$$
g(u)=\left(\begin{array}{cc}
\gamma \cos \frac{\phi}{2}-\mathrm{i} \gamma \sin \frac{\phi}{2} & -\mathrm{i}(\alpha-\mathrm{i} \beta) \\
-\mathrm{i}(\alpha+\mathrm{i} \beta) & \gamma \cos \frac{\phi}{2}+\mathrm{i} \gamma \sin \frac{\phi}{2}
\end{array}\right)
$$

yields a good parametrization. We now wish to find the group law $w^{k}=w^{k}(u, v)$, at least rudimental.
Generators. Determine the three generators

$$
X_{1}=\left.\frac{\partial}{\partial \phi} g(u)\right|_{u=0}, \quad X_{2}=\left.\frac{\partial}{\partial \alpha} g(u)\right|_{u=0}, \quad X_{3}=\left.\frac{\partial}{\partial \beta} g(u)\right|_{u=0}
$$

Conversely one has $\exp \left(-\mathrm{i} \frac{\phi}{2} \vec{n} \cdot \vec{\sigma}\right)$ with

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ for all ϕ and $\vec{n}=(\alpha, \beta, \gamma)$ an element of $S U(2)$. Moreover, we have

$$
\exp \left(-\mathrm{i} \frac{\phi}{2} \vec{n} \cdot \vec{\sigma}\right)=\cos \frac{\phi}{2} 1 l-\mathrm{i} \sin \frac{\phi}{2} \vec{n} \cdot \vec{\sigma}
$$

Algebra. Determine the structure constants of the Lie algebra of the generators σ_{k} of $S U(2)$. To do so, you have to compute the commutators $\left[\sigma_{j}, \sigma_{k}\right]=\mathrm{i} f_{j k}{ }^{l} \sigma_{l}$. Result: $f_{j k}^{l}=2 \varepsilon_{j k}^{l}$. With this you can write down the group law in a first order approximation: $w^{l}(u, v)=u^{l}+v^{l}-\frac{1}{2} u^{j} v^{k} f_{j k}^{l}$.

