

Four-Point Functions in LCFT

Surprises from SL(2,C) covariance

Michael Flohr

Physics Institute \diamond University of Bonn

and Marco Krohn

Institute for Theoretical Physics \diamond University of Hannover

Beyond the Standard Model XVI \diamond Bad Honnef, 10. March 2004

Motivation

- abelian sandpiles,
- percolation,
- Haldane-Rezayi fractional quantum Hall state,
- disorder etc.
- 9 Presumably LCFT will play a role in string theory, e.g.
 - D-brane recoil,
 - world-sheet formulation on AdS_3 ,
 - or, more generally, when non-compact CFTs arise.
- Subtleties in non-compact CFTs, e.g. Liouville theory:
 - non-uniqueness of fusion matrices,
 - non-trivial factorization properties of correlators,
 - difficulties in definition of consistent OPEs,
 - additional constraints for unitarity and locality.
- 5 These subtleties are typical for LCFT!

Foundations: SL(2,C) covariance

6 Correlation functions have to satisfy the *global conformal Ward identities*, i.e. for m = -1, 0, 1 we must have

$$0 = L_m \langle \Psi_1(z_1) \dots \Psi_n(z_n) \rangle$$

=
$$\sum_{i=1}^n z_i^m \left[z_i \partial_i + (m+1)(h_i + \hat{\delta}_{h_i}) \right] \langle \Psi_1(z_1) \dots \Psi_n(z_n) \rangle .$$

In case of rank r > 1 Jordan cells of indecomposable representations with respect to *Vir*, we have

$$\hat{\delta}_{h_i} \Psi_{(h_j;k_j)} = \begin{cases} \delta_{i,j} \Psi_{(h_j;k_j-1)} & \text{if } 1 \le k_j \le r-1 \,, \\ 0 & \text{if } k_j = 0 \,. \end{cases}$$

• Equivalently, $L_0|h;k\rangle = h|h;k\rangle + (1 - \delta_{k,0})|h;k-1\rangle$.

Foundations: Recurrence

⁶ Ward identities become *inhomogeneous* in LCFT. The inhomogeneities are given by correlation functions with *total Jordan-level* $K = \sum_{i=1}^{n} k_i$ decreased by one,

$$\left\langle \Psi_{(h_1;k_1)}(z_1) \dots \Psi_{(h_n;k_n)}(z_n) \right\rangle \equiv \left\langle k_1 k_2 \dots k_n \right\rangle ,$$

$$\frac{1}{(m+1)} L'_m \left\langle k_1 k_2 \dots k_n \right\rangle = -z_1^m \left\langle k_1 - 1, k_2 \dots k_n \right\rangle$$

$$- z_2^m \left\langle k_1, k_2 - 1, k_3 \dots k_n \right\rangle$$

$$- \dots$$

$$- z_n^m \left\langle k_1 \dots k_{n-1}, k_n - 1 \right\rangle .$$

We obtain a hierarchical scheme of solutions, starting with correlators of total Jordan-level K = r - 1.

Foundations: Correlators

Generic form of 1-, 2- and 3-pt functions for fields forming Jordan cells, pre-logarithmic fields and fermionic fields in arbitrary rank r LCFT known:

$$\langle \Psi_{(h;k)} \rangle = \delta_{h,0} \delta_{k,r-1} ,$$

$$\langle \Psi_{(h;k)}(z)\Psi_{(h';k')}(0)\rangle = \delta_{hh'} \sum_{j=r-1}^{k+k'} D_{(h;j)} \sum_{\substack{0 \le i \le k, 0 \le i' \le k' \\ i+i'=k+k'-j}} \frac{(\partial_h)^i}{i!} \frac{(\partial_{h'})^{i'}}{i'!} z^{-h-h'} ,$$

$$\langle \Psi_{(h_1;k_1)}(z_1)\Psi_{(h_2;k_2)}(z_2)\Psi_{(h_3;k_3)}(z_3)\rangle = \sum_{\substack{j=r-1 \\ j=r-1}}^{k_1+k_2+k_3} C_{(h_1h_2h_3;j)}$$

$$\times \sum_{\substack{0 \le i_l \le k_l, l=1,2,3 \\ i_1+i_2+i_3=k_1+k_2+k_3-j}} \frac{(\partial_{h_1})^{i_1}}{i_1!} \frac{(\partial_{h_2})^{i_2}}{i_2!} \frac{(\partial_{h_3})^{i_3}}{i_3!} \prod_{\substack{\sigma \in S_3 \\ \sigma(1) < \sigma(2)}} (z_{\sigma(1)\sigma(2)})^{h_{\sigma(3)}-h_{\sigma(1)}-h_{\sigma(2)}}$$

$$\Psi_{(h_1;k_1)}(z_1)\Psi_{(h_2;k_2)}(z_2) = \sum_{(h;k)} \Psi_{(h;k)}(z_2) \lim_{z_1 \to z_2} \sum_{k'}$$

$$\left\langle \Psi_{(h_1;k_1)}(z_1)\Psi_{(h_2;k_2)}(z_2)\Psi_{(h;k')}(z_3)\right\rangle \left(\left\langle \Psi_{(h;\cdot)}(z_2)\Psi_{(h;\cdot)}(z_3)\right\rangle^{-1}\right)_{k',k'}$$

- 6 Crucial role of zero modes worked out: all known LCFTs have realizations which include fermionic fields.
- Maximal power of logs bounded by zero mode content:

$$Z_*(\Psi_{(h;k)}) \le Z_*(\Psi_{(h_1;k_1)}) + Z_*(\Psi_{(h_2;k_2)}).$$

Non-quasi-primary members of Jordan-cells: zero mode content yields BRST structure for correlators under action of Virasoro algebra.

n-pt Functions: Graphs

⁶ To find a useful algorithm to fix the generic form of 4ptfunctions, visualize a logarithmic field $\Psi_{(h;k)}$ by a vertex with k outgoing lines.

6 Contractions of logarithmic fields give rise to logarithms in the correlators. The possible powers with which $log(z_{ij})$ may occur, can be determined by graph combinatorics.

n-pt Functions: Graphs II

- 5 Terms of generic form of n-pt function given by sum over all admissible graphs subject to the rules:
 - Each k_{out} -vertex may receive $k'_{in} \leq (r-1)$ lines.
 - Vertices with $k_{out} = 0$ (primary fiels) do not receive any legs.
 - Vertex *i* can receive legs from vertex *j* only for $j \neq i$.
 - Precisely r 1 lines in correlator remain open.
- **Example:** 4pt function for r = 2 and all fields logarithmic yields, upto permutations, the graphs

4pt Functions: Algorithm

- 6 Linking numbers $A_{ij}(g)$ of given graph g yield upper bounds for power with which logarithms occur.
- 6 **Recursive procedure:** start with all ways f_i to choose r 1 free legs, find at each level K' and for each configuration f_i all graphs, which connect the remaining K K' (r 1) legs to vertices.
- 6 Write down corresponding monomial in $\log(z_{ij})$, multiplied with an as yet undetermined constant C(g) for each graph g.
- Oetermine some constants by imposing global conformal invariance.
- 6 Fix further constants by imposing admissible permutation symmetries.

4pt Functions: Generic Form

6 Generic form of the LCFT 4pt functions $\langle k_1 k_2 k_3 k_4 \rangle \equiv \langle \Psi_{(h_1;k_1)}(z_1) \dots \Psi_{(h_4;k_4)}(z_4) \rangle$ is

$$\langle k_1 k_2 k_3 k_4 \rangle = \prod_{i < j} (z_{ij})^{\mu_{ij}} \sum_{(k'_1, k'_2, k'_3, k'_4)} \left[\sum_{g \in G_{K-K'}} C(g) \left(\prod_{i < j} \log^{A_{ij}(g)}(z_{ij}) \right) \right] F_{k'_1 k'_2 k'_3 k'_4}(x) ,$$

Г

where

- $G_{K-K'} \text{ is set of graphs for } (k_1 k'_1, \dots, k_4 k'_4),$
- $A_{ij}(g)$ is linking number of vertices i, j of graph g,
- $\land x$ is the crossing ratio $x = \frac{z_{12}z_{34}}{z_{14}z_{23}}$,
- μ_{ij} is typically $\mu_{ij} = \frac{1}{3} \left(\sum_k h_k \right) h_i h_j$.

4pt Functions: *r*=2

- 5 The only direct dependence on the conformal weights is through the μ_{ij} . Put $h_1 = \ldots = h_4 = 0$ for simplicity.
- 6 The generic form obeys some symmetry under permutations. Put $\ell_{ij} \equiv \log(z_{ij})$ and assume i < j throughout.

4pt Functions: Symmetry

- Symmetry under permutations allows to write formulæ in more compact form.
- 6 The permutation operators \mathcal{P} run over all inequivalent permutations such that i < j in all the z_{ij} and ℓ_{ij} involved.
- In the last example, $\mathcal{P}_{(123)} = (123) + (231) + (312)$ subject to the above rule.
- ⁶ The ordering rule for ℓ_{ij} may be neglected, since in the full correlators, combined out of holomorphic and anti-holomorphic part in a single-valued way, only $\log |z_{ij}|^2$ will appear.

4pt Functions: Surprise

Interestingly, there remain *free constants*, when all fields are logarithmic!

$$\langle 1111 \rangle = F_{1111} + \mathcal{P}_{(1234)} \{ \left[(-\ell_{12} - \ell_{34} + \ell_{23} + \ell_{14}) C_1 + (\ell_{13} + \ell_{24} - \ell_{12} - \ell_{34}) C_2 - \ell_{14} + \ell_{34} - \ell_{13} \right] F_{0111} \}$$

- $+ \mathcal{P}_{(12)(34)} \{ [(\ell_{13}^2 + \ell_{24}^2 \ell_{14}^2 \ell_{23}^2 + 2(-\ell_{34}\ell_{24} \ell_{12}\ell_{24} + \ell_{34}\ell_{14} + \ell_{13}\ell_{24} \\ \ell_{13}\ell_{34} + \ell_{23}\ell_{34} + \ell_{12}\ell_{23} \ell_{12}\ell_{13} \ell_{23}\ell_{14} + \ell_{12}\ell_{14}))C_3 \\ + (-(\ell_{23} + \ell_{14})^2 + \ell_{23}\ell_{34} + \ell_{12}\ell_{14} \ell_{13}\ell_{34} + \ell_{34}\ell_{14} + \ell_{13}\ell_{14} \\ \ell_{34}\ell_{24} \ell_{12}\ell_{13} \ell_{12}\ell_{24} + \ell_{23}\ell_{24} + \ell_{23}\ell_{13} + \ell_{12}\ell_{23} + \ell_{24}\ell_{14}))C_4 \\ \ell_{34}^2 \ell_{23}^2 \ell_{14}^2 + 2\ell_{23}\ell_{34} + 2\ell_{34}\ell_{14} 2\ell_{12}\ell_{34} \ell_{23}\ell_{14} + \ell_{23}\ell_{24} \\ \ell_{12}\ell_{13} + \ell_{12}\ell_{14} + \ell_{12}\ell_{23} \ell_{12}\ell_{24} + \ell_{13}\ell_{14} + \ell_{13}\ell_{24})]F_{1100} \} \\ + [2(\ell_{12}\ell_{24}\ell_{14} \ell_{23}\ell_{13}\ell_{14} + \ell_{23}\ell_{34}\ell_{24} \ell_{24}\ell_{13}\ell_{34} \ell_{23}\ell_{34}\ell_{14}]]F_{1100} \} \\ + [2(\ell_{12}\ell_{24}\ell_{14} \ell_{23}\ell_{13}\ell_{14} + \ell_{23}\ell_{34}\ell_{24} \ell_{24}\ell_{13}\ell_{34} \ell_{23}\ell_{34}\ell_{14}]]F_{1100} \} \\ + [2(\ell_{12}\ell_{24}\ell_{14} \ell_{23}\ell_{13}\ell_{14} + \ell_{23}\ell_{34}\ell_{24} \ell_{24}\ell_{13}\ell_{34} \ell_{23}\ell_{34}\ell_{14}]]F_{1100} \} \\ + [2(\ell_{12}\ell_{24}\ell_{14} \ell_{23}\ell_{13}\ell_{14} + \ell_{23}\ell_{34}\ell_{24} \ell_{24}\ell_{13}\ell_{34} \ell_{23}\ell_{34}\ell_{14}]]F_{1100}]]F_{1100} \} \\ + [2(\ell_{12}\ell_{24}\ell_{14} \ell_{23}\ell_{13}\ell_{14} + \ell_{23}\ell_{34}\ell_{24} \ell_{24}\ell_{13}\ell_{34} \ell_{23}\ell_{34}\ell_{14}]]F_{1100}]]F_{1100}]F_{110}]F_{1100}]F_{110}]F_{110}]F_{110}]F_{110}]F$
 - $-\ell_{12}\ell_{23}\ell_{34} \ell_{12}\ell_{34}\ell_{24} \ell_{23}\ell_{13}\ell_{24} + \ell_{12}\ell_{23}\ell_{13} + \ell_{13}\ell_{34}\ell_{14}$
 - $-\ell_{13}\ell_{14}\ell_{24} \ell_{23}\ell_{24}\ell_{14} \ell_{12}\ell_{13}\ell_{24} \ell_{12}\ell_{23}\ell_{14} \ell_{12}\ell_{13}\ell_{34}$
 - $-\ell_{12}\ell_{34}\ell_{14})$
 - $+ 2(\ell_{13}^2\ell_{24} + \ell_{12}^2\ell_{34} + \ell_{14}^2\ell_{23} + \ell_{23}^2\ell_{14} + \ell_{34}^2\ell_{12} + \ell_{24}^2\ell_{13})]F_0$

4pt Functions: *r* = 3

- 6 Next trivial case: Jordan cells of rank r = 3. Each Jordan level $0 \le k_i \le 2$.
- 6 Graph combinatorics gets more involved.

$$\begin{array}{rcl} \langle 2000 \rangle &=& \langle 1100 \rangle &=& F_0 \,, \\ && \langle 2100 \rangle &=& F_{2100} - 2\ell_{12}F_0 \,, \\ && \langle 1110 \rangle &=& F_{1110} - (\ell_{12} + \ell_{23} + \ell_{13})F_0 \\ && =& F_{1110} - \mathcal{P}_{(123)} \left\{ \ell_{12}F_0 \right\} \,, \end{array}$$

zykl.

4pt Functions: *r* = 3 contd

4pt Functions: To Do

- 5 Further examples ... need bigger transparencies ; -)
- **Froblem:** Computational complexity grows heavily with rank r and total Jordan level K. Already the generic solution for r = 2 and $K_{\text{max}} = 4(r 1) = 4$ needs a computer program.
- **Solution:** MAPLE package, written by Marco Krohn, almost finished. Need to make implementation of algorithm more efficient. So far, K > 2(r 1) for r > 3 still too complex.
- ⁶ Permutation symmetry for the highest degree polynomial in the ℓ_{ij} , appearing in front of $F_0(x)$, is not obvious and difficult to find.

Outlook

- Need to understand origin of additional free constants.
- △ Include explicit crossing symmetry. Should decrease number of different functions $F_{k'_1,k'_2,k'_3,k'_4}(x)$, in particular for cases where several conformal weights are equal, $h_i = h_j$.
- A Need to generalize to c = 0 LCFTs important for percolation and for disorder. Problem: the naive vacuum representation is trivial.
- Adapt algorithm to include pre-logarithmic fields: Skip the rule that primary vertices do not receive legs.

Summary

- We found a method to fix the generic form of 4-pt and *n*-pt functions in arbitrary rank LCFT.
- 6 Already the form of 4-pt functions, as determined by global conformal invariance, is much more complicated than in the ordinary case.
- 6 There seems to exist additional degrees of freedom not present in ordinary CFT.
- We showed a few examples of non-trivial solutions. Already the solution for r = 2 and K = 4, is new and generalizes known expressions.
- 6