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Motivation

LCFT important for many applications such as
abelian sandpiles,
percolation,
Haldane-Rezayi fractional quantum Hall state,
disorder etc.

Presumably LCFT will play a role in string theory, e.g.
D-brane recoil,
world-sheet formulation on AdS3,
or, more generally, when non-compact CFTs arise.

Subtleties in non-compact CFTs, e.g. Liouville theory:
non-uniqueness of fusion matrices,
non-trivial factorization properties of correlators,
difficulties in definition of consistent OPEs,
additional constraints for unitarity and locality.

These subtleties are typical for LCFT!
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Foundations: SL(2,C) covariance

Correlation functions have to satisfy the global confor-
mal Ward identities, i.e. for m = −1, 0, 1 we must have

0 = Lm 〈Ψ1(z1) . . . Ψn(zn)〉

=
n
∑

i=1

zm
i

[

zi∂i + (m + 1)(hi + δ̂hi
)
]

〈Ψ1(z1) . . . Ψn(zn)〉 .

In case of rank r > 1 Jordan cells of indecomposable
representations with respect to Vir, we have

δ̂hi
Ψ(hj ;kj) =

{

δi,jΨ(hj ;kj−1) if 1 ≤ kj ≤ r − 1 ,

0 if kj = 0 .

Equivalently, L0|h; k〉 = h|h; k〉 + (1 − δk,0)|h; k − 1〉.
lcft 4pt – p. 3/18



Foundations: Recurrence

Ward identities become inhomogeneous in LCFT. The
inhomogeneities are given by correlation functions with
total Jordan-level K =

∑n

i=1 ki decreased by one,
〈

Ψ(h1;k1)(z1) . . . Ψ(hn;kn)(zn)
〉

≡ 〈k1k2 . . . kn〉 ,

1

(m + 1)
L′

m 〈k1k2 . . . kn〉 = − zm
1 〈k1 − 1, k2 . . . kn〉

− zm
2 〈k1, k2 − 1, k3 . . . kn〉

− . . .

− zm
n 〈k1 . . . kn−1, kn − 1〉 .

We obtain a hierarchical scheme of solutions, starting
with correlators of total Jordan-level K = r − 1.
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Foundations: Correlators

Generic form of 1-, 2- and 3-pt functions for fields for-
ming Jordan cells, pre-logarithmic fields and fermionic
fields in arbitrary rank r LCFT known:

〈Ψ(h;k)〉 = δh,0δk,r−1 ,

〈Ψ(h;k)(z)Ψ(h′;k′)(0)〉 = δhh′

k+k′
∑

j=r−1

D(h;j)

∑

0≤i≤k,0≤i′≤k′

i+i′=k+k′−j

(∂h)
i

i!

(∂h′)i′

i′!
z−h−h′

,

〈Ψ(h1;k1)(z1)Ψ(h2;k2)(z2)Ψ(h3;k3)(z3)〉 =

k1+k2+k3
∑

j=r−1

C(h1h2h3;j)

×
∑

0≤il≤kl,l=1,2,3
i1+i2+i3=k1+k2+k3−j

(∂h1)
i1

i1!

(∂h2)
i2

i2!

(∂h3)
i3

i3!

∏

σ∈S3
σ(1)<σ(2)

(zσ(1)σ(2))
hσ(3)−hσ(1)−hσ(2) .
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Foundations: OPE

Ψ(h1;k1)(z1)Ψ(h2;k2)
(z2) =

∑

(h;k)

Ψ(h;k)(z2) lim
z1→z2

∑

k′

〈Ψ(h1;k1)(z1)Ψ(h2;k2)(z2)Ψ(h;k′)(z3)〉
(

〈Ψ(h;·)(z2)Ψ(h;·)(z3)〉
−1
)

k′,k
.

Crucial role of zero modes worked out: all known LCFTs
have realizations which include fermionic fields.
Maximal power of logs bounded by zero mode content:

Z∗(Ψ(h;k)) ≤ Z∗(Ψ(h1;k1)) + Z∗(Ψ(h2;k2)) .

Non-quasi-primary members of Jordan-cells: zero mo-
de content yields BRST structure for correlators under
action of Virasoro algebra.
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n-pt Functions: Graphs

To find a useful algorithm to fix the generic form of 4pt-
functions, visualize a logarithmic field Ψ(h;k) by a vertex
with k outgoing lines.

h;k( )Ψ

h’;k’( )Ψk-i

k’-i’

i

i’

Contractions of logarithmic fields give rise to logarithms
in the correlators. The possible powers with which
log(zij) may occur, can be determined by graph com-
binatorics.
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n-pt Functions: Graphs II

Terms of generic form of n-pt function given by sum over
all admissible graphs subject to the rules:

Each kout-vertex may receive k′
in ≤ (r − 1) lines.

Vertices with kout = 0 (primary fiels) do not receive
any legs.

Vertex i can receive legs from vertex j only for j 6= i.

Precisely r − 1 lines in correlator remain open.

Example: 4pt function for r = 2 and all fields logarithmic
yields, upto permutations, the graphs

.
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4pt Functions: Algorithm

Linking numbers Aij(g) of given graph g yield upper
bounds for power with which logarithms occur.

Recursive procedure: start with all ways fi to choo-
se r − 1 free legs, find at each level K ′ and for each
configuration fi all graphs, which connect the remaining
K − K ′ − (r − 1) legs to vertices.

Write down corresponding monomial in log(zij), mul-
tiplied with an as yet undetermined constant C(g) for
each graph g.

Determine some constants by imposing global confor-
mal invariance.
Fix further constants by imposing admissible permuta-
tion symmetries.
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4pt Functions: Generic Form

Generic form of the LCFT 4pt functions 〈k1k2k3k4〉 ≡
〈Ψ(h1;k1)(z1) . . . Ψ(h4;k4)(z4)〉 is

〈k1k2k3k4〉 =
∏

i<j

(zij)
µij

∑

(k′
1,k′

2,k′
3,k′

4)

[

∑

g∈GK−K′

C(g)

(

∏

i<j

logAij(g)(zij)

)]

Fk′
1k′

2k′
3k′

4
(x) ,

where

GK−K′ is set of graphs for (k1 − k′
1, . . . , k4 − k′

4),

Aij(g) is linking number of vertices i, j of graph g,

x is the crossing ratio x = z12z34

z14z23
,

µij is typically µij = 1
3
(
∑

k hk) − hi − hj .
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4pt Functions: r = 2

The only direct dependence on the conformal weights
is through the µij. Put h1 = . . . = h4 = 0 for simplicity.

The generic form obeys some symmetry under permu-
tations. Put `ij ≡ log(zij) and assume i < j throughout.

〈1000〉 = F0 ,

〈1100〉 = F1100 − 2`12F0 ,

〈1110〉 = F1110

+ (`12 − `13 − `23)F1100 + (`13 − `12 − `23)F1010

− (`23 − `12 − `13)F0110

+ (−`2
12 − `2

13 − `2
23 + 2`12`23 + 2`12`13 + 2`23`13)F0

= F1110 + P(123) {(`12 − `23 − `13)F1100}

+ P(123) {`12(`12 − `23 − `13)F0} .
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4pt Functions: Symmetry

Symmetry under permutations allows to write formulæ
in more compact form.

The permutation operators P run over all inequivalent
permutations such that i < j in all the zij and `ij invol-
ved.
In the last example, P(123) = (123)+(231)+(312) subject
to the above rule.
The ordering rule for `ij may be neglected, since in the
full correlators, combined out of holomorphic and anti-
holomorphic part in a single-valued way, only log |zij |

2

will appear.
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4pt Functions: Surprise

Interestingly, there remain free constants, when all
fields are logarithmic!

〈1111〉 = F1111 + P(1234)

˘ˆ

(−`12 − `34 + `23 + `14)C1 + (`13 + `24 − `12 − `34)C2

− `14 + `34 − `13)
˜

F0111

¯

+ P(12)(34)

˘ˆ

(`213 + `224 − `214 − `223 + 2(−`34`24 − `12`24 + `34`14 + `13`24

− `13`34 + `23`34 + `12`23 − `12`13 − `23`14 + `12`14))C3

+ (−(`23 + `14)2 + `23`34 + `12`14 − `13`34 + `34`14 + `13`14

− `34`24 − `12`13 − `12`24 + `23`24 + `23`13 + `12`23 + `24`14))C4

− `234 − `223 − `214 + 2`23`34 + 2`34`14 − 2`12`34 − `23`14 + `23`24

− `12`13 + `12`14 + `12`23 − `12`24 + `13`14 + `13`24)
˜

F1100

¯

+
ˆ

2(`12`24`14 − `23`13`14 + `23`34`24 − `24`13`34 − `23`34`14

− `12`23`34 − `12`34`24 − `23`13`24 + `12`23`13 + `13`34`14

− `13`14`24 − `23`24`14 − `12`13`24 − `12`23`14 − `12`13`34

− `12`34`14)

+ 2(`213`24 + `212`34 + `214`23 + `223`14 + `234`12 + `224`13)
˜

F0
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4pt Functions: r = 3

Next trivial case: Jordan cells of rank r = 3. Each Jor-
dan level 0 ≤ ki ≤ 2.
Graph combinatorics gets more involved.

〈2000〉 = 〈1100〉 = F0 ,

〈2100〉 = F2100 − 2`12F0 ,

〈1110〉 = F1110 − (`12 + `23 + `13)F0

= F1110 − P(123) {`12F0} ,

+

=

+ + zykl.
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4pt Functions: r = 3 contd

Again, if all ki > 0, free constants remain:

〈1111〉 = F1111

+ P(1234)

{[

(`13 − `12 + `24 − `34)C1

+ (`23 + `14 − `34 − `12)C2 − `14 + `24 − `12

]

F0111

}

+
[(

`
2
12 + `

2
24 + `

2
34 + `

2
13 + 2(`12`13 + `13`24 − `13`34

− `34`24 − `12`24 + `12`34)
)

C3

+
(

− 2`13`14 + `
2
24 + 2`23`14 − 2`23`24 + `

2
23 + 2`13`24

+ `
2
13 − 2`23`13 + `

2
14 − 2`24`14

)

C4

+
(

(`24 + `13)
2

+ `12`14 − `23`24 − `12`24 − `24`14 − `23`13 + `34`14

− `13`34 − `13`14 + `23`34 − `34`24 + `12`23 − `12`13

)

C5

+ 2(`13`24 + `23`14 + `12`34)
]

F0 .
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4pt Functions: To Do

Further examples . . . need bigger transparencies ;-)

Problem: Computational complexity grows heavily with
rank r and total Jordan level K. Already the generic so-
lution for r = 2 and Kmax = 4(r − 1) = 4 needs a compu-
ter program.

Solution: MAPLE package, written by Marco Krohn, al-
most finished. Need to make implementation of algo-
rithm more efficient. So far, K > 2(r − 1) for r > 3 still
too complex.

Permutation symmetry for the highest degree polynomi-
al in the `ij , appearing in front of F0(x), is not obvious
and difficult to find.
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Outlook

Questions:

Need to understand origin of additional free con-
stants.
Include explicit crossing symmetry. Should decrease
number of different functions Fk′

1,k′
2,k′

3,k′
4
(x), in parti-

cular for cases where several conformal weights are
equal, hi = hj.

Need to generalize to c = 0 LCFTs important for per-
colation and for disorder. Problem: the naive vacuum
representation is trivial.

Adapt algorithm to include pre-logarithmic fields:
Skip the rule that primary vertices do not receive
legs.
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Summary

We found a method to fix the generic form of 4-pt and
n-pt functions in arbitrary rank LCFT.

Already the form of 4-pt functions, as determined by
global conformal invariance, is much more complicated
than in the ordinary case.

There seems to exist additional degrees of freedom not
present in ordinary CFT.

We showed a few examples of non-trivial solutions. Al-
ready the solution for r = 2 and K = 4, is new and ge-
neralizes known expressions.

. . .
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