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Identifies mathematical structures which describe reality.
Newton: Everything is matter =⇒ Analysis.
He assumed even light consists of particles.

Einstein: Everything is energy =⇒ Geometry.
We all know the famous E = mc2.
Heisenberg: Everything is symmetry =⇒ Algebra.
Conservation laws, Noether theorem, selection rules,
gauge groups, . . .

Symmetries govern many aspects of modern theoretical
physics.

Natural question: What possible symmetries are there?

More fundamental questions: What does it mean that
Nature can be described by mathematical structures?
Why is Nature so “symmetric”?
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Experience shows that the laws of Nature are fixed by sym-
metries to a sometimes miraculous extent.

Look at the spectrum of atoms in crystals.
The discrete finite group of rigid symmetries of the cry-
stal predicts which degeneracies are lifted.

The known fundamental forces (except gravity) are de-
scribed by gauge field theories.
Quantum numbers appear as weights of representati-
ons of the gauge groups, which are all Lie groups such
as U(1), SU(2) and SU(3).

Extended or composite objects possess even larger
symmetries such as infinite-dimensional Lie algebras.

One symmetry is particularly interesting: symmetry under
scaling (think of dimensional analysis!).
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Suppose, a theory is invariant under local scale transfor-
mations: gµν(x) 7→ g̃µν(x̃) = λ(x)gµν(x). Such maps locally
conserve angles. That’s why they are called conformal.

There is something very special about conformal maps in
two dimensions . . .
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In two dimensions, we can work on the complex plane C:
z = x + iy, z̄ = x − iy. Any holomorphic map z 7→ z ′ = f(z),
∂f(z) = 0, is conformal. Thus, two-dimensional conformally
invariant theories have an infinite number of symmetries.

My personal interest is in quantum field theories.

f(z) = z + ε(z) = z +
∑

n∈Z

εnz
n ,

[Lε,Φ(z)] = Φ(z + ε(z)) =⇒

[Ln, Lm] = (n − m)Ln+m +
c

12
(n3 − n)δn+m,0 .

This is the Virasoro algebra of the generators of local
conformal transformations. It is an example of an infinite-
dimensional Lie algebra.
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To classify conformally invariant theories means to study the
representation theory of this algebra.

Universality classes of two-dimensional statistical sys-
tems at their points of criticality are classified by the value
of the central extension c.

Critical exponents are given in terms of the scaling dimen-
sions of primary fields, i.e. highest weights of irreps:

Φh(f(z)) =

(

∂f(z)

∂z

)−h

Φh(z) , lim
z→0

Φh(z)|0〉 ≡ |h, c〉 .

In particular Φh(λz) = λ−hΦh(z).

The two-dim. Ising model possesses three basic observa-
bles, the identity Φ0 = I, the energy operator Φ1/2 = ε, and
the spin field or order parameter Φ1/16 = σ or µ, respectively.
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The simplest conformally invariant statistical field theories
are classified very similar to spin in quantum mechanics:
Put Lz = L0, L± = L±1 and the su(2) algebra takes the form
[Ln, Lm] = (n − m)Ln+m. The role of the Casimir C = ~L2 is
roughly given by c.

cp,q = 1 − 6 (p−q)2

pq
~L2|`,m〉 = `(` + 1)|`,m〉

p, q ≥ 1 coprime ` ∈ Z+

L0|h, c〉 = h|h, c〉 Lz|`,m〉 = m|`,m〉

Ln|h, c〉 = 0 for n > 0 L+|`, `〉 = 0

hr,s(c) = (pr−qs)2−(p−q)2

4pq
h(`) = `

1 ≤ r < q , 1 ≤ s < p ` = `

|h; {n}, c〉 = L−nk
. . . L−n1 |h, c〉 |`, ` − m〉 = (L−)m|`, `〉

0 =
∑

|{n}|=N β{n}L−{n}|h, c〉 0 = (L−)2`+1|`, `〉
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Ultimately, one wants to compute expectation values of
observables, 〈0|Φh1(z1)Φh2(z2) . . . Φhn

(zn)|0〉.

〈Φh1(z1)Φh2(z2)〉 = Dh1(z1 − z2)
−h1−h2δh1,h2 ,

〈Φh1(z1)Φh2(z2)Φh3(z3)〉 = Ch1h2h3(z1 − z2)
h3−h1−h2

× (z1 − z3)
h2−h1−h3(z2 − z3)

h1−h2−h3 ,

〈Φh1(z1)Φh2(z2)Φh3(z3)Φh4(z4)〉 =
∏

i<j

(zi − zj)
µijF

(p)
h1h2h3h4

(x) ,

where
∑

j 6=i µij = −2hi, x = (z1−z2)(z3−z4)
(z1−z4)(z2−z3)

is the crossing
ratio, and p labels the conformal blocks.

During the last 20 years, a lot of technology has been
developed to efficiently and exactly compute the F (p)(x) and
higher n-point functions.
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We are used to expect that (tensor) representations can be
completely reduced into irreps. Coupling angular momen-
tum in quantum mechanics amounts to

[`1] ⊗ [`2] =

`1+`2
∑

`=|`1−`2|

[`] .

In conformal field theory, coupling
fields works much the same,

( )pF = N12
p

h1 h3

h4h2

hp

[h1, c] ∗ [h2, c] =
∑

h

N h
h1h2

[h, c] , N h
h1h2

∈ Z+ .

Classifying these so-called fusion algebras is a very import-
ant problem in conformal field theory, but . . .

lcft – p. 9/14



. . . but it may happen, that the fusion product of two irreps
cannot again be decomposed into irreps!

There exists a conformal field theory with c = c2,1 = −2. It
contains an innocent and admissible irrep corresponding to
a primary field µ with h = h1,2 = −1/8. However,

〈µ(∞)µ(1)µ(x)µ(0)〉 =

[x(1 − x)]1/4











F (1) = 2F1(
1
2
, 1

2
, 1;x)

F (2) = log(x) 2F1(
1
2
, 1

2
; 1;x)

+ ∂ε 3F2(
1
2

+ ε, 1
2

+ ε, 1; 1 + ε, 1 + ε; x)
∣

∣

ε=0

.

One can show that this implies [−1
8
,−2]∗ [−1

8
,−2] = [0̃,−2],

where L0|h̃, c〉 = h|h̃, c〉 + |h, c〉 spans a Jordan cell. Thus,
the representation on the rhs is indecomposable.

Φ̃h̃(λz) = λ−h
(

Φ̃h̃(z) − log(λ)Φh(z)
)

.
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Indecomposable representations are at the heart of lo-
garithmic conformal field theory.

Correlation functions have to satisfy the global confor-
mal Ward identities, i.e. for m = −1, 0, 1 we must have

0 = Lm 〈Ψ1(z1) . . . Ψn(zn)〉

=
n

∑

i=1

zm
i

[

zi∂i + (m + 1)(hi + δ̂hi
)
]

〈Ψ1(z1) . . . Ψn(zn)〉 .

In case of rank r > 1 Jordan cells of indecomposable
representations with respect to Vir, we have

δ̂hi
Ψ(hj ;kj) =

{

δi,jΨ(hj ;kj−1) if 1 ≤ kj ≤ r − 1 ,

0 if kj = 0 .
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Although logarithms break scale invariance, correlators
can still be invariant under global conformal maps.

Generic form of 1-, 2- and 3-pt functions for fields for-
ming Jordan cells in arbitrary rank r LCFT is known:

〈Ψ(h;k)〉 = δh,0δk,r−1 ,

〈Ψ(h;k)(z)Ψ(h′;k′)(0)〉 = δhh′

k+k′
∑

j=r−1

D(h;j)

∑

0≤i≤k,0≤i′≤k′

i+i′=k+k′−j

(∂h)
i

i!

(∂h′)i′

i′!
z−h−h′

,

〈Ψ(h1;k1)(z1)Ψ(h2;k2)(z2)Ψ(h3;k3)(z3)〉 =

k1+k2+k3
∑

j=r−1

C(h1h2h3;j)

×
∑

0≤il≤kl,l=1,2,3
i1+i2+i3=k1+k2+k3−j

(∂h1)
i1

i1!

(∂h2)
i2

i2!

(∂h3)
i3

i3!

∏

σ∈S3
σ(1)<σ(2)

(zσ(1)σ(2))
hσ(3)−hσ(1)−hσ(2) .
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LCFT on a torus and other non-trivial Riemann surfaces
=⇒ modular invariants and characters of indecompo-
sable representations =⇒ N k

ij .

Null vectors in indecomposable representations =⇒

exploiting local conformal symmetry to exactly compute
correlators in LCFT =⇒ Cijk and F (p)(x).

Classification of LCFTs similar to the minimal models
=⇒ identifying theories of potential interest in physics
=⇒ LCFTs as limits of sequences of ordinary CFTs.

LCFT on surfaces with boundaries,
LCFT wrt extended chiral algebras,
LCFT and vertex operator algebras,
LCFT and modular differential eqn,
. . .
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LCFT important for many applications such as
abelian sandpiles,
percolation and disorder,
Haldane-Rezayi fractional quantum Hall state,
mathematics (e.g. alternating sign matrices).

Presumably LCFT will play a role in string theory, e.g.
D-brane recoil,
world-sheet formulation on AdS3,
or, more generally, when non-compact CFTs arise.

Subtleties in non-compact CFTs, e.g. Liouville theory:
non-uniqueness of fusion matrices N k

ij ,
non-trivial factorisation properties of correlators into F (p),
difficulties in definition of consistent OPEs via Cijk,
additional constraints for unitarity and locality: h, c ≤ 0.

These subtleties are typical for LCFT!
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