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LWAliathematical Phyc ey

Identifies mathematical structures which describe reality.

Newton: Everything is matter Analysis.
He assumed even light consists of particles.

Einstein: Everything is energy Geometry.
We all know the famous £ = mc>.
Heisenberg: Everything is symmetry Algebra.

Conservation laws, Noether theorem, selection rules,
gauge groups, ...
Symmetries govern many aspects of modern theoretical
physics.
Natural question: What possible symmetries are there?

More fundamental questions: What does it mean that
Nature can be described by mathematical structures?
Why is Nature so “symmetric”?
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LA inmetries?

Experience shows that the laws of Nature are fixed by sym-
metries to a sometimes miraculous extent.

Look at the spectrum of atoms in crystals.
The discrete finite group of rigid symmetries of the cry-
stal predicts which degeneracies are lifted.

The known fundamental forces (except gravity) are de-
scribed by gauge field theories.

Quantum numbers appear as weights of representati-
ons of the gauge groups, which are all Lie groups such
as U(1), SU(2) and SU(3).

Extended or composite objects possess even larger
symmetries such as infinite-dimensional Lie algebras.

One symmetry is particularly interesting: symmetry under
scaling (think of dimensional analysis!).
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I Symmetry

Suppose, a theory is invariant under local scale transfor-
mations: ¢ (x) — g () = A(x)g"(z). Such maps locally
conserve angles. That's why they are called conformal.
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‘'here is something very special about conformal maps in
two dimensions ...
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IS immetry

In two dimensions, we can work on the complex plane C:
z =x+1y,zZ = x — iy. Any holomorphic map z — 2’ = f(z),
df(z) = 0, is conformal. Thus, two-dimensional conformally
invariant theories have an infinite number of symmetries.

My personal interest is in quantum field theories.

f(2yn=-2z+e(z) = z+z<€nz”,

L., @(2)] = ®(z+e(2))
Ly Ll = (1 — m) Ly + %(n?’ N

This Is the Virasoro algebra of the generators of local
conformal transformations. It is an example of an infinite-
dimensional Lie algebra.
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\WHLTE =Y this useful?

To classify conformally invariant theories means to study the
representation theory of this algebra.

Universality classes of two-dimensional statistical sys-
tems at their points of criticality are classified by the value
of the central extension c.

Critical exponents are given in terms of the scaling dimen-
sions of primary fields, i.e. highest weights of irreps:

82 z—0

D,(f(2)) = (8f(z))z ®,(z), limd,(2)]|0) = |h,c).

In particular ®,(\z) =\ "®,(2).

The two-dim. Ising model possesses three basic observa-
bles, the identity ®, = I, the energy operator ®,,, = ¢, and
the spin field or order parameter ¢, ,,; = o or pu, respectively.
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VLl models

The simplest conformally invariant statistical field theories
are classified very similar to spin in quantum mechanics:
Put L, = Ly, L+ = L4, and the su(2) algebra takes the form
(L, L] = (n — m)Ly.rm. The role of the Casimir C = L? is
roughly given by c.

g = 1 -6 L2,m) = (((+1)]¢,m)
p,q > 1 coprime e,
Lolh,cy = hlh,c) L.[t;m) = m|l,m)
Lp\h,e) = 0 for n >0 L.ty = 0
hps(C) = (pr—qslp;(p—Q) h) = ¢
1<r<q,1<s<p =1
1h;d{n},¢) = L_y,, ...L_n |0, c) 0,0 —m)y = (L_)™|¢,70)
0 = 3 imyen B Loyl c) 0 = (L-)**¢0)
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®elgr:-1Fl 10N functions

Ultimately, one wants to compute expectation values of
observables, (0|®), (21)P,(2z2) ... P, (2,)]0).

(@, ()8, () = Dy =) 6,
(@1, (20) @1, (22) @1, (23)) = Chupny (21— 22)" 707

> (Zl . Zg)hz—hl—hg (22 . Zg)hl—hz—hg 7

(@1, (21)@1, (22) @1, (25) @1, (20)) = [[(zi—2)"E") (@),

hihohsha
1<J

where Y, i = —2h, v = E=2lE-2) s the crossing

(21—24)(22—23)
ratio, and p labels the conformal blocks.
During the last 20 years, a lot of technology has been

developed to efficiently and exactly compute the F(?)(z) and
higher n-point functions.
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ST =L iiation theory

We are used to expect that (tensor) representations can be
completely reduced into irreps. Coupling angular momen-
tum in quantum mechanics amounts to

1442 hl h3
0] @ [ls] = Z /] .
(=01 15 h:,,

p
Ny

F© =

In conformal field theory, coupling
fields works much the same, h, h,

[hl? hQ? Z Nh}llhg h C Nh}llhg S Z—I— .

Classifying these so-called fusion algebras is a very import-
ant problem in conformal field theory, but . ..
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S il e surprise

... but it may happen, that the fusion product of two irreps
cannot again be decomposed into irreps!

There exists a conformal field theory with ¢ = ¢, ; = —2. |t
contains an innocent and admissible irrep corresponding to
a primary field p with » = 7, , = —1/8. However,

(p(o0) (1) p(z)p(0)) =
() = 2F1(%7%715$)
(1 — )]V ¢ FO) = 2 Fi(5, 5 1 )
\ +8€3F2(%+e,%+e,1;1+e,1+e;x)EZO
One can show that this implies [, —2]x [ 1, —2] = [0, —2],

where Ly|/, ¢) = hlh,¢) + |h, ¢) spans a Jordan cell. Thus,
the representation on the rhs is indecomposable.

B, (A2) = A" (B (2) — log(N) @1 (2) ).
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HeloElgiilimic CFT

Indecomposable representations are at the heart of lo-
garithmic conformal field theory.

Correlation functions have to satisfy the global confor-
mal Ward identities, i.e. for m = —1,0, 1 we must have

0 = L, {(Vi(z1)...V,(2,))
= e a0+ A+ D)+ )| (Bi(z1) - W)

1=1

In case of rank r > 1 Jordan cells of indecomposable
representations with respect to Vir, we have

S 0; WUin. 1. it 1<k <r—1,
5’%\11(%;%3') { SRk > Ry ST

0 if k;=0.
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HeloElgiilimic CFT

Although logarithms break scale invariance, correlators
can still be invariant under global conformal maps.

Generic form of 1-, 2- and 3-pt functions for fields for-
ming Jordan cells in arbitrary rank » LCFT is known:

<\Ij(h,k)> — 5h,05k,r—1 )

k+k'

(On)" (On)"
<\Ij(h,k)( ) (h'; k’ — 5hh’ Z ‘D (h;J) Z ;! i/ < )
J=r—1 0<i<k,0<i/ <K/
it+i/ =k+k!—;
k1+ko+k3
<\Ij(h1;k1)(Zl)qj(h%kz)('z?)\l}(h?, k3 Z C(h1h2h3j
1=r—1
Ony )™t (O )™ (Opg)™
% Z ( hl') ( h2') ( hB') H (20(1)0(2))h0(3)—ha(l)—hJ(Q) .
0<i;<k;,1=1,2,3 1 b2 t3: o€S3
i1+i90+ig=k1+ko+ksy—J o(l1)<o(2)
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Sl lnlc¥ ' Chievements

LCFT on a torus and other non-trivial Riemann surfaces
modular invariants and characters of indecompo-

sable representations N.".

Null vectors in indecomposable representations
exploiting local conformal symmetry to exactly compute

correlators in LCFT C,;. and F?)(x).

Classification of LCFTs similar to the minimal models
identifying theories of potential interest in physics
_CFTs as limits of sequences of ordinary CFTs.

_CFT on surfaces with boundaries,
_CFT wrt extended chiral algebras,
_CFT and vertex operator algebras,
_CFT and modular differential egn,
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Vi [eYiAlation

LCFT important for many applications such as
abelian sandpiles,
percolation and disorder,
Haldane-Rezayi fractional quantum Hall state,
mathematics (e.g. alternating sign matrices).

Presumably LCFT will play a role in string theory, e.g.
D-brane recoill,
world-sheet formulation on AdS;,
or, more generally, when non-compact CFTs arise.
Subtleties in non-compact CFTs, e.g. Liouville theory:
non-uniqueness of fusion matrices N ",

non-trivial factorisation properties of correlators into F),
difficulties in definition of consistent OPEs via C,
additional constraints for unitarity and locality: /., ¢ < 0.

These subtleties are typical for LCFT!
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