Factorization Constraints in Non–Compact Non–Rational Conformal Field Theory

Hendrik Adorf

Gottfried Wilhelm Leibniz Universität Hannover

Outline » Outline

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

What is non-compact non-rational CFT?

Outline » Outline

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

What is non-compact non-rational CFT?

• Why is it of interest?

- Outline » Outline
- Motivation and Introduction

Sewing Constraints and D–Branes

- What is non-compact non-rational CFT?
- Why is it of interest?
- Prototype example: The H₃⁺ model

Outline
» Outline

Motivation and Introduction

Sewing Constraints and D–Branes

- What is non-compact non-rational CFT?
- Why is it of interest?
- Prototype example: The H₃⁺ model
- Rôle of sewing constraints in CFT and BCFT

Outline
» Outline

Motivation and Introduction

Sewing Constraints and D–Branes

- What is non-compact non-rational CFT?
- Why is it of interest?
- Prototype example: The H₃⁺ model
- Rôle of sewing constraints in CFT and BCFT → D-branes

Outline
» Outline

Motivation and Introduction

Sewing Constraints and D–Branes

- What is non-compact non-rational CFT?
- Why is it of interest?
- Prototype example: The H_3^+ model
- Rôle of sewing constraints in CFT and BCFT —> D–branes
- Our results and observations on the factorization constraint in the H⁺₃ model

- Outline » Outline
- Motivation and Introduction

Sewing Constraints and D–Branes

- What is non-compact non-rational CFT?
- Why is it of interest?
- Prototype example: The H_3^+ model
- Rôle of sewing constraints in CFT and BCFT —> D-branes
- Our results and observations on the factorization constraint in the H⁺₃ model
- Conclusions

Motivation and Introduction

Rational CFT (RCFT)	Non–Compact Non–Rational CFT

Rational CFT (RCFT)	Non–Compact Non–Rational CFT
finite # of highest weight states	

Rational CFT (RCFT)	Non–Compact Non–Rational CFT
finite # of highest weight states	
Iot of general technology available	

Non–Compact Non–Rational CFT

Rational CFT (RCFT)	Non–Compact Non–Rational CFT
finite # of highest weight states	
Iot of general technology available	
axiomatized structure	
prototype examples:	
$\hat{su}(2)_k$ WZNW model	
\downarrow	
minimal models	

Rational CFT (RCFT)	Non–Compact Non–Rational CFT
finite # of highest weight states	continuum of highest weight states
Iot of general technology available	
 axiomatized structure 	
prototype examples:	
$\hat{su}(2)_k$ WZNW model	
\downarrow	
minimal models	

Rational CFT (RCFT)		
finite # of highest weight states		
Iot of general technology available		
 axiomatized structure 		
prototype examples:		
$\hat{su}(2)_k$ WZNW model		
\downarrow		
minimal models		

- continuum of highest weight states
- ► only some specific models feasible

Rational CFT (RCFT)

- finite # of highest weight states
- ► lot of general technology available
- axiomatized structure
- prototype examples:

 $\hat{su}(2)_k$ WZNW model

minimal models

- continuum of highest weight states
- only some specific models feasible
- lack of general structural results

Rational CFT (RCFT)		
finite # of highest weight states		
Iot of general technology available		
axiomatized structure		
prototype examples:		
$\hat{su}(2)_k$ WZNW model		
\downarrow		
minimal models		

- continuum of highest weight states
- only some specific models feasible
- lack of general structural results
- ► prototype examples: H_3^+ model (($\hat{sl}(2, \mathbb{C})_k$ WZNW)) ↑ Liouville Theory

Outline

Motivation and Introduction » Non–Compact Non–Rational CFT...

» ... and String Theory

Sewing Constraints and D–Branes

Outline

Motivation and Introduction » Non–Compact Non–Rational CFT...

» ... and String Theory

Sewing Constraints and D–Branes

Conclusions

String theory: Critical dimension

Outline

Motivation and Introduction » Non–Compact Non–Rational CFT...

» ... and String Theory

Sewing Constraints and D–Branes

Conclusions

String theory: Critical dimension

Away from criticality: Liouville sector

Ou	tlin	e
----	------	---

Motivation and Introduction » Non–Compact Non–Rational CFT...

» ... and String Theory

Sewing Constraints and D–Branes

- String theory: Critical dimension
- Away from criticality: Liouville sector
- Need to treat non-compact curved spacetime backgrounds

Outline	
---------	--

Motivation and Introduction » Non–Compact Non–Rational CFT...

» ... and String Theory

Sewing Constraints and D–Branes

- String theory: Critical dimension
- Away from criticality: Liouville sector
- Need to treat non-compact curved spacetime backgrounds
- In particular: Anti–de–Sitter (*AdS*) spaces

Outline	
---------	--

Motivation and Introduction » Non–Compact Non–Rational CFT...

» ... and String Theory

Sewing Constraints and D–Branes

- String theory: Critical dimension
- Away from criticality: Liouville sector
- Need to treat non-compact curved spacetime backgrounds
- In particular: Anti–de–Sitter (*AdS*) spaces
- benefit of AdS_3 : $SL(2, \mathbb{R})$ group manifold \longrightarrow WZNW model

Outline

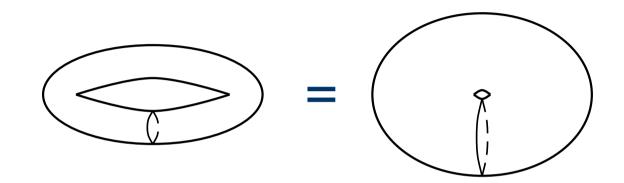
Motivation and Introduction » Non–Compact Non–Rational CFT...

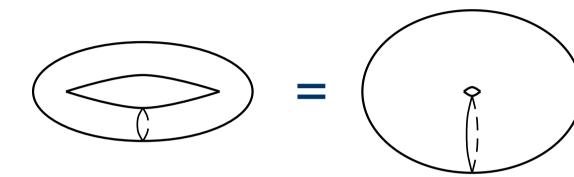
» ... and String Theory

Sewing Constraints and D–Branes

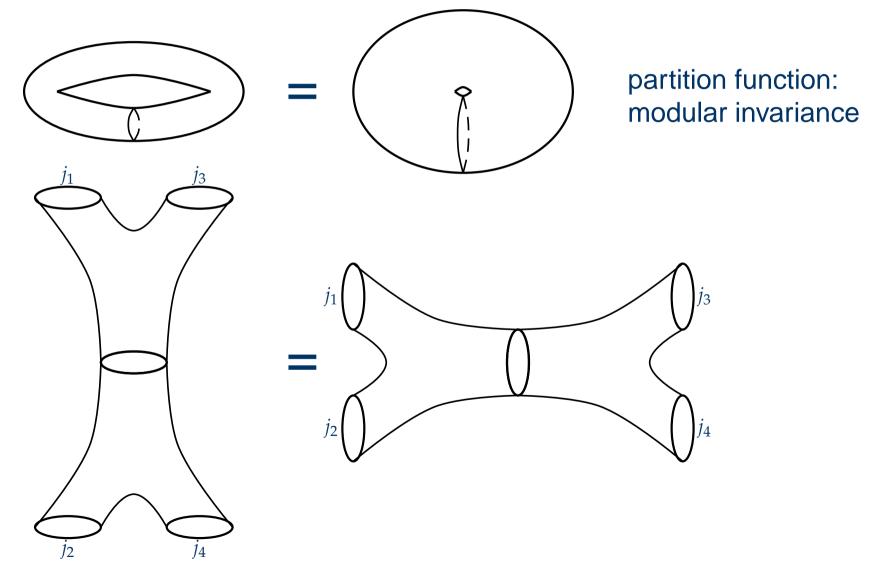
- String theory: Critical dimension
- Away from criticality: Liouville sector
- Need to treat non-compact curved spacetime backgrounds
- In particular: Anti–de–Sitter (AdS) spaces
- benefit of AdS_3 : $SL(2, \mathbb{R})$ group manifold \longrightarrow WZNW model
- even nicer: euclidean rotation to $SL(2, \mathbb{C})/SU(2) = H_3^+$

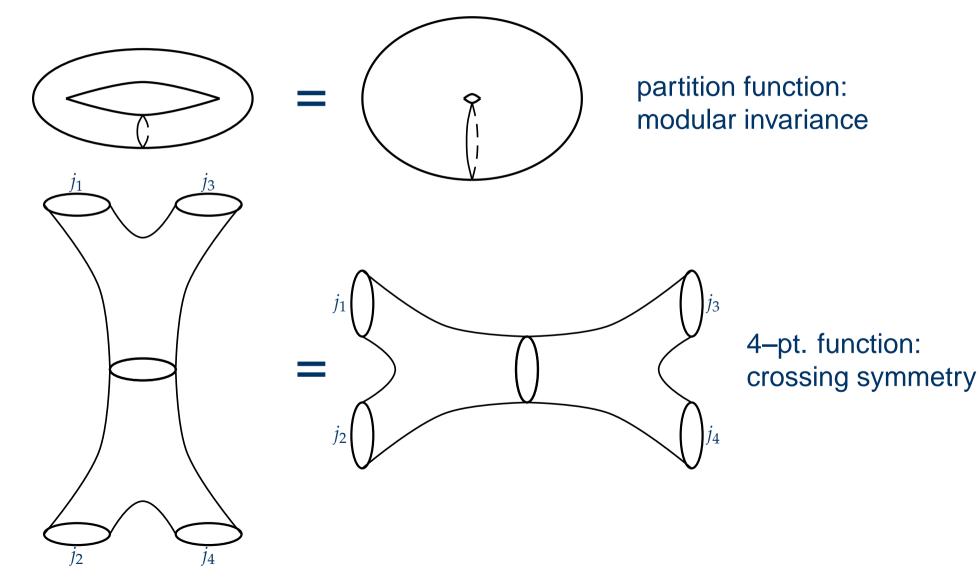
Sewing Constraints and D–Branes

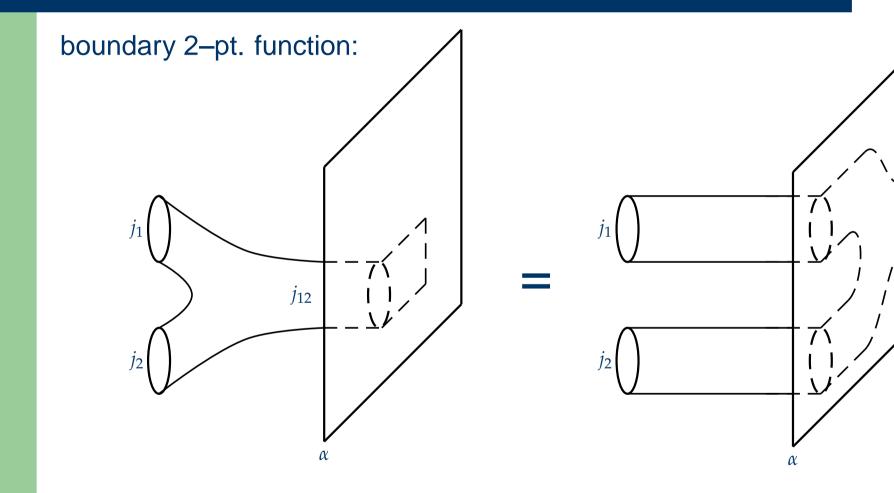


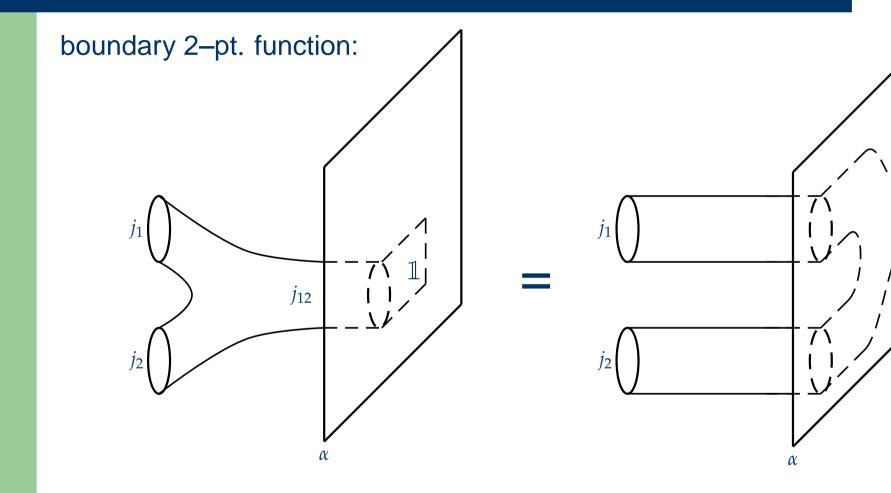


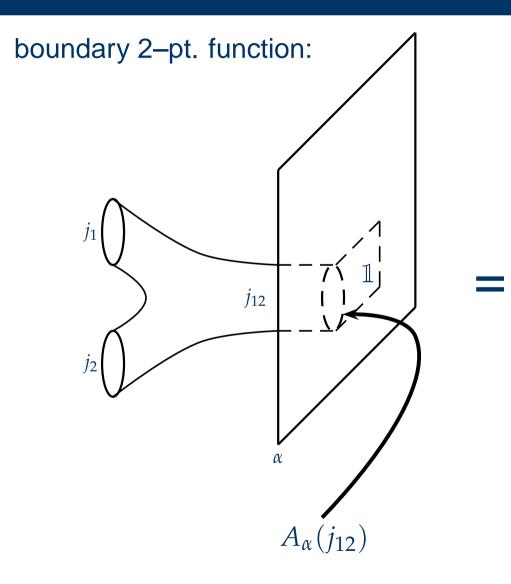
partition function: modular invariance

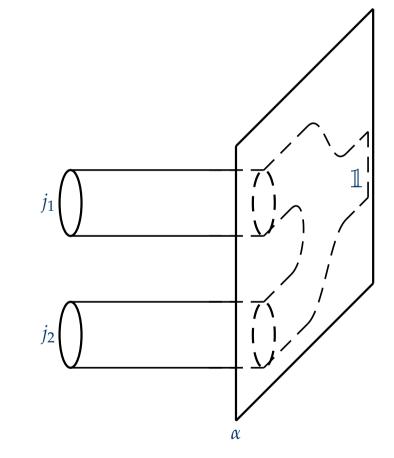


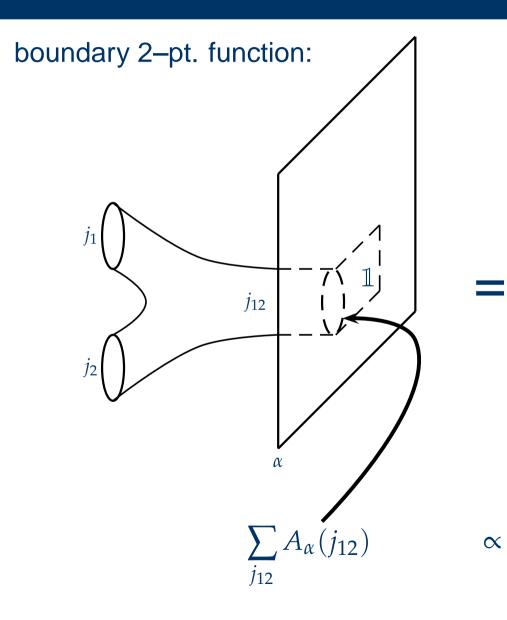


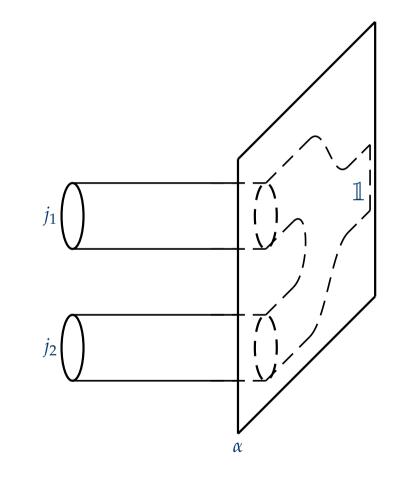






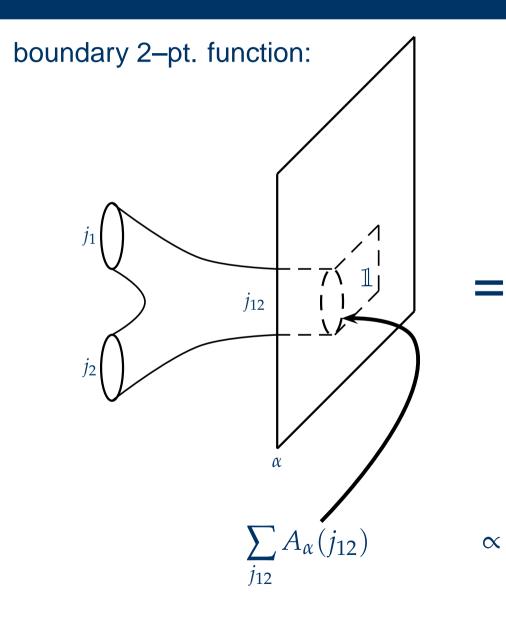


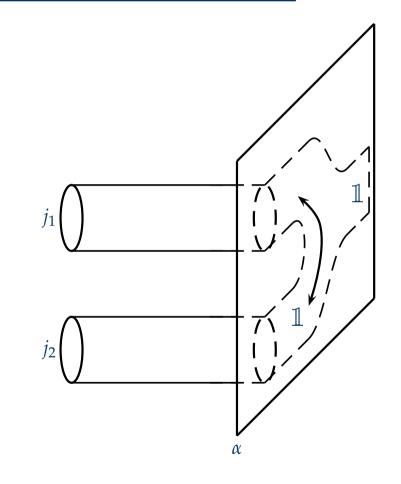




 $\sum_{q,\bar{q}} C_{\alpha}(j_1,q) C_{\alpha}(j_2,\bar{q})$

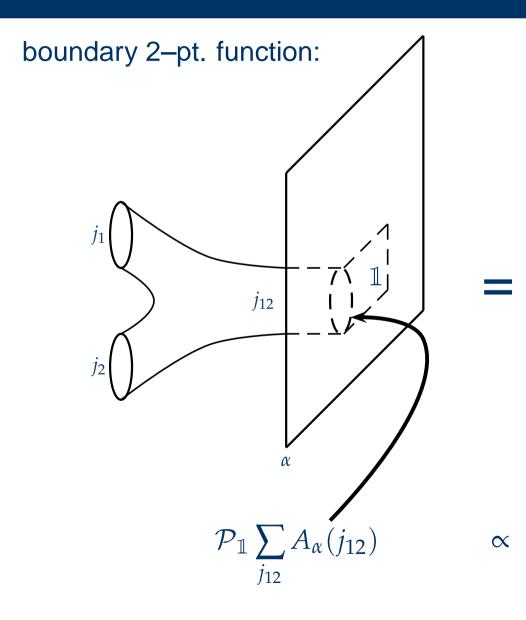
Sewing Constraints in Boundary CFT

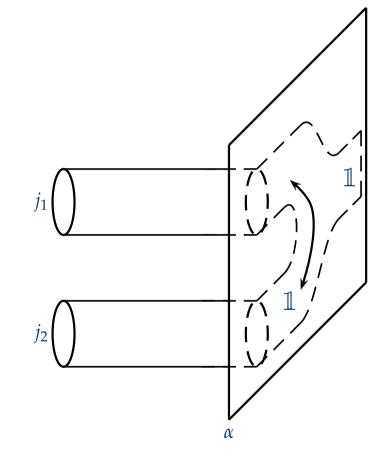




 $\sum_{q,\bar{q}} C_{\alpha}(j_1,q) C_{\alpha}(j_2,\bar{q})$

Sewing Constraints in Boundary CFT





 $A_{\alpha}(j_1)A_{\alpha}(j_2)$

Outline

Motivation and Introduction

Sewing Constraints and

D-Branes

» Sewing Constraints in Bulk

CFT

» Sewing Constraints in

Boundary CFT

$*H_3^+$ model

» Factorization Constraint in the

 ${\rm H_3^+}$ model I

» Factorization Constraint in the

 ${\rm H_3^+}$ model II

» Comparison

Conclusions

H_3^+ model

Outline

Motivation and Introduction

Sewing Constraints and

D-Branes

» Sewing Constraints in Bulk

CFT

» Sewing Constraints in

Boundary CFT

$m ^{+}H_{3}^{+}$ model

» Factorization Constraint in the H_3^+ model I

» Factorization Constraint in the

 ${\rm H_3^+}$ model II

» Comparison

Conclusions

► $\hat{sl}(2, \mathbb{C})_k$ symmetry

H_3^+ model

Outline

Motivation and Introduction

Sewing Constraints and

D–Branes

» Sewing Constraints in Bulk

CFT

» Sewing Constraints in

Boundary CFT

$m ^{+} H_{3}^{+}$ model

» Factorization Constraint in the H_3^+ model I

» Factorization Constraint in the

 H_3^+ model II

» Comparison

Conclusions

▶ $\hat{sl}(2,\mathbb{C})_k$ symmetry \longrightarrow highest weight states fall into $sl(2,\mathbb{C})$ representations

Outline

Motivation and Introduction

Sewing Constraints and

D–Branes

» Sewing Constraints in Bulk

CFT

» Sewing Constraints in

Boundary CFT

$*H_3^+$ model

» Factorization Constraint in the H_3^+ model I

» Factorization Constraint in the

 H_3^+ model II

» Comparison

Conclusions

▶ $\hat{sl}(2,\mathbb{C})_k$ symmetry \longrightarrow highest weight states fall into $sl(2,\mathbb{C})$ representations

relevant: principal continuous series with "spins"

 $j \in -\frac{1}{2} + \mathbf{i}\mathbb{R}$

Outline

Motivation and Introduction

Sewing Constraints and

D–Branes

» Sewing Constraints in Bulk

CFT

» Sewing Constraints in

Boundary CFT

$*H_3^+$ model

» Factorization Constraint in the

 H_3^+ model I

» Factorization Constraint in the

 H_3^+ model II

» Comparison

Conclusions

▶ $\hat{sl}(2,\mathbb{C})_k$ symmetry \longrightarrow highest weight states fall into $sl(2,\mathbb{C})$ representations

relevant: principal continuous series with "spins"

 $j \in -\frac{1}{2} + i\mathbb{R} \longrightarrow \text{fields } \Theta_j(u|z)$

Outline

Motivation and Introduction

Sewing Constraints and

D-Branes

» Sewing Constraints in Bulk

CFT

» Sewing Constraints in

Boundary CFT

 H_3^+ model

» Factorization Constraint in the ${\rm H_3^+}$ model I

» Factorization Constraint in the

 H_3^+ model II

» Comparison

Conclusions

Outline

D–Branes

CFT

► analyze boundary 2–point function

$$G_{\alpha}^{(2)}(u,z) = \left\langle \Theta_{j}(u_{1},z_{2})\Theta_{j'}(u_{2},z_{2})\right\rangle_{\alpha}$$

Boundary CFT $*H_2^+$ model

» Factorization Constraint in the ${\rm H}_3^+$ model I

Motivation and Introduction

» Sewing Constraints in Bulk

Sewing Constraints and

» Sewing Constraints in

» Factorization Constraint in the

 H_3^+ model II

» Comparison

Conclusions

Outline

D–Branes

Boundary CFT » H₂⁺ model

 H_3^+ model I

H₃⁺ model II » Comparison

Conclusions

CFT

Motivation and Introduction

» Sewing Constraints in Bulk

» Factorization Constraint in the

» Factorization Constraint in the

Sewing Constraints and

» Sewing Constraints in

analyze boundary 2–point function

$$G_{\alpha}^{(2)}(u,z) = \left\langle \Theta_j(u_1,z_2)\Theta_{j'}(u_2,z_2) \right\rangle_{\alpha}$$

▶ generic j, j': not feasible!

Outline

D–Branes

Boundary CFT » H₂⁺ model

 H_3^+ model I

H₃⁺ model II » Comparison

CFT

Motivation and Introduction

» Sewing Constraints in Bulk

» Factorization Constraint in the

» Factorization Constraint in the

Sewing Constraints and

» Sewing Constraints in

analyze boundary 2–point function

$$G_{\alpha}^{(2)}(u,z) = \left\langle \Theta_j(u_1,z_2)\Theta_{j'}(u_2,z_2) \right\rangle_{\alpha}$$

▶ generic j, j': not feasible!

"Teschner's trick": take one field in a (non-physical) reducible representation

Conclusions

Outline

D–Branes

Boundary CFT » H₂⁺ model

 H_3^+ model I

 H_2^+ model II

» Comparison

Conclusions

CFT

Motivation and Introduction

» Sewing Constraints in Bulk

» Factorization Constraint in the

» Factorization Constraint in the

Sewing Constraints and

» Sewing Constraints in

analyze boundary 2–point function

$$G_{\alpha}^{(2)}(u,z) = \left\langle \Theta_j(u_1,z_2)\Theta_{j'}(u_2,z_2) \right\rangle_{\alpha}$$

- ▶ generic j, j': not feasible!
- "Teschner's trick": take one field in a (non-physical) reducible representation
- ▶ e.g. j' = 1/2 constraint:

Outline

D–Branes

Boundary CFT » H₂⁺ model

 H_2^+ model I

 H_2^+ model II

» Comparison

Conclusions

CFT

Motivation and Introduction

» Sewing Constraints in Bulk

» Factorization Constraint in the

» Factorization Constraint in the

Sewing Constraints and

» Sewing Constraints in

analyze boundary 2–point function

$$G_{\alpha}^{(2)}(u,z) = \left\langle \Theta_j(u_1,z_2)\Theta_{j'}(u_2,z_2) \right\rangle_{\alpha}$$

▶ generic j, j': not feasible!

- "Teschner's trick": take one field in a (non-physical) reducible representation
- ▶ e.g. j' = 1/2 constraint:

$$A_{\alpha}(1/2)A_{\alpha}(j) \propto \sum_{\pm} A_{\alpha}(j \pm 1/2)$$

[Giveon,Kutasov,Schwimmer'01],[Lee,Ooguri,Park'02],[Ponsot,Schomerus,Teschner'02]

Outline

D–Branes

Boundary CFT » H₂⁺ model

 H_2^+ model I

 H_2^+ model II

» Comparison

Conclusions

CFT

Motivation and Introduction

» Sewing Constraints in Bulk

» Factorization Constraint in the

» Factorization Constraint in the

Sewing Constraints and

» Sewing Constraints in

analyze boundary 2–point function

$$G_{\alpha}^{(2)}(u,z) = \left\langle \Theta_j(u_1,z_2)\Theta_{j'}(u_2,z_2) \right\rangle_{\alpha}$$

▶ generic j, j': not feasible!

- "Teschner's trick": take one field in a (non-physical) reducible representation
- ▶ e.g. j' = 1/2 constraint:

$$A_{\alpha}(1/2)A_{\alpha}(j) \propto \sum_{\pm} A_{\alpha}(j \pm 1/2)$$

[Giveon,Kutasov,Schwimmer'01],[Lee,Ooguri,Park'02],[Ponsot,Schomerus,Teschner'02]

► ... does not fix the solution $A_{\alpha}(j)$ uniquely

Outline

D–Branes

Boundary CFT » H⁺₂ model

H₃⁺ model I

 H_2^+ model II

» Comparison

Conclusions

CFT

Motivation and Introduction

» Sewing Constraints in Bulk

» Factorization Constraint in the

» Factorization Constraint in the

Sewing Constraints and

» Sewing Constraints in

analyze boundary 2–point function

$$G_{\alpha}^{(2)}(u,z) = \left\langle \Theta_j(u_1,z_2)\Theta_{j'}(u_2,z_2) \right\rangle_{\alpha}$$

▶ generic j, j': not feasible!

- "Teschner's trick": take one field in a (non-physical) reducible representation
- ▶ e.g. j' = 1/2 constraint:

$$A_{\alpha}(1/2)A_{\alpha}(j) \propto \sum_{\pm} A_{\alpha}(j \pm 1/2)$$

[Giveon,Kutasov,Schwimmer'01],[Lee,Ooguri,Park'02],[Ponsot,Schomerus,Teschner'02]

- ► ... does not fix the solution $A_{\alpha}(j)$ uniquely
- ► goal: another constraint from next simple reducible representation $j' = b^{-2}/2$

Outline

Motivation and Introduction

Sewing Constraints and

D-Branes

» Sewing Constraints in Bulk

CFT

» Sewing Constraints in

Boundary CFT

 $*H_3^+$ model

» Factorization Constraint in the

 H_3^+ model I

» Factorization Constraint in the

 H_3^+ model II

» Comparison

Conclusions

Outline

Motivation and Introduction

Sewing Constraints and D–Branes » Sewing Constraints in Bulk CFT » Sewing Constraints in Boundary CFT » H₃⁺ model » Factorization Constraint in the H₃⁺ model I

» Factorization Constraint in the ${\rm H_3^+}$ model II

» Comparison

Conclusions

► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$

Outline

Motivation and Introduction

Sewing Constraints and D–Branes » Sewing Constraints in Bulk CFT » Sewing Constraints in Boundary CFT » H₃⁺ model » Factorization Constraint in the H₃⁺ model I » Factorization Constraint in the

 H_3^+ model II

» Comparison

Conclusions

- ► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$
- Technically, need to take factorization limit $z \rightarrow 1$

Outline

Motivation and Introduction

Sewing Constraints and

D-Branes

» Sewing Constraints in Bulk

N Sowing

» Sewing Constraints in

Boundary CFT

» H_3^+ model

» Factorization Constraint in the

 H_3^+ model I

» Factorization Constraint in the ${\rm H_3^+}$ model II

» Comparison

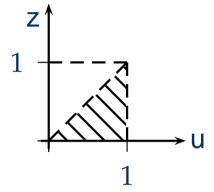
Conclusions

► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$

- Technically, need to take factorization limit $z \rightarrow 1$
- ▶ but for $j' = b^{-2}/2$: boundary 2–point function is only defined for z < u < 1.

- Motivation and Introduction
- Sewing Constraints and
- D-Branes
- » Sewing Constraints in Bulk
- CFT
- » Sewing Constraints in
- Boundary CFT
- » H_3^+ model
- » Factorization Constraint in the
- H_3^+ model I
- » Factorization Constraint in the ${\rm H_3^+}$ model II
- » Comparison
- Conclusions

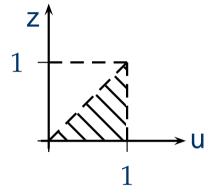
- ► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$
- Technically, need to take factorization limit $z \rightarrow 1$
- ▶ but for $j' = b^{-2}/2$: boundary 2-point function is only defined for z < u < 1.



Outline

- Motivation and Introduction
- Sewing Constraints and D–Branes » Sewing Constraints in Bulk
- CFT
- » Sewing Constraints in
- Boundary CFT
- » H_3^+ model
- » Factorization Constraint in the
- H_3^+ model I
- » Factorization Constraint in the ${\rm H_3^+}$ model II
- » Comparison
- Conclusions

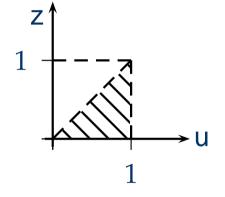
- ► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$
- Technically, need to take factorization limit $z \rightarrow 1$
- ▶ but for $j' = b^{-2}/2$: boundary 2–point function is only defined for z < u < 1.



• need a prescription how to reach the upper patch z > u

- Motivation and Introduction
- Sewing Constraints and D–Branes » Sewing Constraints in Bulk CFT » Sewing Constraints in
- Boundary CFT
- » H_3^+ model
- » Factorization Constraint in the
- H_3^+ model I
- » Factorization Constraint in the ${\rm H_3^+}$ model II
- » Comparison
- Conclusions

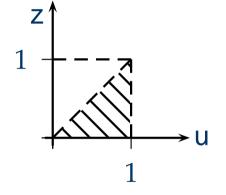
- ► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$
- Technically, need to take factorization limit $z \rightarrow 1$
- ▶ but for $j' = b^{-2}/2$: boundary 2-point function is only defined for z < u < 1.



- need a prescription how to reach the upper patch z > u
- ▶ good news: this can be done

- Motivation and Introduction
- Sewing Constraints and D–Branes » Sewing Constraints in Bulk CFT » Sewing Constraints in Boundary CFT » H⁺₂ model
- » Factorization Constraint in the
- H_3^+ model I
- » Factorization Constraint in the ${\rm H_3^+}$ model II
- » Comparison
- Conclusions

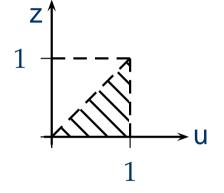
- ► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$
- Technically, need to take factorization limit $z \rightarrow 1$
- ▶ but for $j' = b^{-2}/2$: boundary 2-point function is only defined for z < u < 1.



- need a prescription how to reach the upper patch z > u
- ▶ good news: this can be done
- other good news: there are even two possibilities!

- Motivation and Introduction
- Sewing Constraints and D–Branes » Sewing Constraints in Bulk CFT » Sewing Constraints in Boundary CFT » H⁺₂ model
- » Factorization Constraint in the
- H_3^+ model I
- » Factorization Constraint in the ${\rm H_3^+}$ model II
- » Comparison
- Conclusions

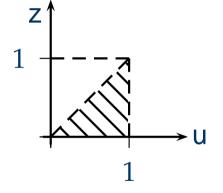
- ► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$
- Technically, need to take factorization limit $z \rightarrow 1$
- ▶ but for $j' = b^{-2}/2$: boundary 2-point function is only defined for z < u < 1.



- need a prescription how to reach the upper patch z > u
- ▶ good news: this can be done
- other good news: there are even two possibilities!
 - analytic continuation [Giveon,Kutasov,Schwimmer'01],[Adorf,Flohr'08]

- Motivation and Introduction
- Sewing Constraints and D–Branes » Sewing Constraints in Bulk CFT » Sewing Constraints in Boundary CFT » H₂⁺ model
- » Factorization Constraint in the
- ${\rm H_3^+}$ model I
- » Factorization Constraint in the ${\rm H_3^+}$ model II
- » Comparison
- Conclusions

- ► Recall: boundary 2–point function $G_{\alpha}^{(2)}(u,z)$
- Technically, need to take factorization limit $z \rightarrow 1$
- ▶ but for $j' = b^{-2}/2$: boundary 2–point function is only defined for z < u < 1.



- ▶ need a prescription how to reach the upper patch z > u
- ▶ good news: this can be done
- ▶ other good news: there are even two possibilities!
 - analytic continuation [Giveon,Kutasov,Schwimmer'01],[Adorf,Flohr'08]
 - continuity at u = z [Adorf,Flohr'07]

analytic continuation	continuity proposal

analytic continuation	continuity proposal
► discrete <i>AdS</i> branes: $(m, n) \in \mathbb{Z}^2$	

analytic continuation	continuity proposal
► discrete <i>AdS</i> branes: $(m, n) \in \mathbb{Z}^2$	
► continuous AdS branes: $\alpha \in \mathbb{R}$	

analytic continuation	continuity proposal
 ▶ discrete AdS branes: $(m,n) \in \mathbb{Z}^2$ ▶ continuous AdS branes: α ∈ ℝ ▶ discrete: $j \in \frac{1}{2}\mathbb{Z}$ 	

analytic continuation	continuity proposal
► discrete AdS branes: $(m, n) \in \mathbb{Z}^2$	
► continuous AdS branes: $\alpha \in \mathbb{R}$	
► discrete: $j \in \frac{1}{2}\mathbb{Z}$	
continuous: no restrictions on j	

analytic continuation	continuity proposal
► discrete AdS branes: $(m, n) \in \mathbb{Z}^2$	
► continuous AdS branes: $\alpha \in \mathbb{R}$	
► discrete: $j \in \frac{1}{2}\mathbb{Z}$	
continuous: no restrictions on j	
boundary 2-pt. function entirely	
fixed	

analytic continuation	continuity proposal
► discrete AdS branes: $(m,n) \in \mathbb{Z}^2$	▶ discrete AdS branes: $(m, n) \in \mathbb{Z}^2$
► continuous AdS branes: $\alpha \in \mathbb{R}$	
► discrete: $j \in \frac{1}{2}\mathbb{Z}$	
continuous: no restrictions on j	
boundary 2-pt. function entirely	
fixed	

analytic continuation	continuity proposal
► discrete AdS branes: $(m, n) \in \mathbb{Z}^2$	► discrete AdS branes: $(m,n) \in \mathbb{Z}^2$
► continuous AdS branes: $\alpha \in \mathbb{R}$	► continuous AdS branes: $\alpha \in \mathbb{R}$
• discrete: $j \in \frac{1}{2}\mathbb{Z}$	
continuous: no restrictions on j	
boundary 2-pt. function entirely	
fixed	

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- discrete: $j \in \frac{1}{2}\mathbb{Z}$
- ► continuous: no restrictions on *j*
- boundary 2–pt. function entirely fixed

continuity proposal

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- ► discrete: no restrictions on *j*

analytic o	continuation
------------	--------------

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- discrete: $j \in \frac{1}{2}\mathbb{Z}$
- ► continuous: no restrictions on *j*
- boundary 2–pt. function entirely fixed

continuity proposal

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- ► discrete: no restrictions on *j*
- ► continuous: no restrictions on *j*

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- discrete: $j \in \frac{1}{2}\mathbb{Z}$
- ► continuous: no restrictions on *j*
- boundary 2–pt. function entirely fixed

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- ► discrete: no restrictions on *j*
- ► continuous: no restrictions on *j*
- 1-parameter ambiguity in boundary 2-pt. function

analytic continua	ation	
► discrete AdS branes: ((m,n)	$) \in \mathbb{Z}^2$

- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- discrete: $j \in \frac{1}{2}\mathbb{Z}$
- \blacktriangleright continuous: no restrictions on *j*
- boundary 2–pt. function entirely fixed

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- ► discrete: no restrictions on *j*
- ► continuous: no restrictions on *j*
- 1-parameter ambiguity in boundary 2-pt. function (suggested from Liouville/H₃⁺ relation)

analytic con	tinuatio	n
	1	~

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- discrete: $j \in \frac{1}{2}\mathbb{Z}$
- ► continuous: no restrictions on *j*
- boundary 2–pt. function entirely fixed

- ► discrete *AdS* branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- ► discrete: no restrictions on *j*
- ► continuous: no restrictions on *j*
- 1-parameter ambiguity in boundary 2-pt. function (suggested from Liouville/H₃⁺ relation)
- we could show: factorization constraint remains unambiguous

analytic continuation	continuity proposal
• discrete AdS branes: $(m,n) \in \mathbb{Z}^2$	► discrete AdS branes: $(m, n) \in \mathbb{Z}^2$
• continuous AdS branes: $\alpha \in \mathbb{R}$	► continuous AdS branes: $\alpha \in \mathbb{R}$
• discrete: $j \in \frac{1}{2}\mathbb{Z}$	discrete: no restrictions on j
continuous: no restrictions on j	\blacktriangleright continuous: no restrictions on <i>j</i>
boundary 2-pt. function entirely	1-parameter ambiguity in
fixed	boundary 2-pt. function
	(suggested from Liouville/ H_3^+ relation)
	we could show: factorization
	constraint remains unambiguous

Both approaches: meaningful factorization constraint

\mathbb{Z}^2
i
elation)
us
<i>i</i> elatic

Both approaches: meaningful factorization constraint ► Brane spectra coincide

analytic continuation	
► discrete AdS branes: $(m,n) \in \mathbb{Z}^2$	► d
► continuous AdS branes: $\alpha \in \mathbb{R}$	► C
• discrete: $j \in \frac{1}{2}\mathbb{Z}$	► d
continuous: no restrictions on j	► C
boundary 2-pt. function entirely	▶ 1
fixed	b
	(9

- ► discrete AdS branes: $(m, n) \in \mathbb{Z}^2$
- ► continuous AdS branes: $\alpha \in \mathbb{R}$
- discrete: no restrictions on j
- continuous: no restrictions on j
- 1-parameter ambiguity in boundary 2-pt. function (suggested from Liouville/H₃⁺ relation)
- we could show: factorization constraint remains unambiguous
- Both approaches: meaningful factorization constraint
- Brane spectra coincide
- Analytic continuation slightly more restrictive

Conclusions

Outline

Motivation and Introduction

Sewing Constraints and D–Branes

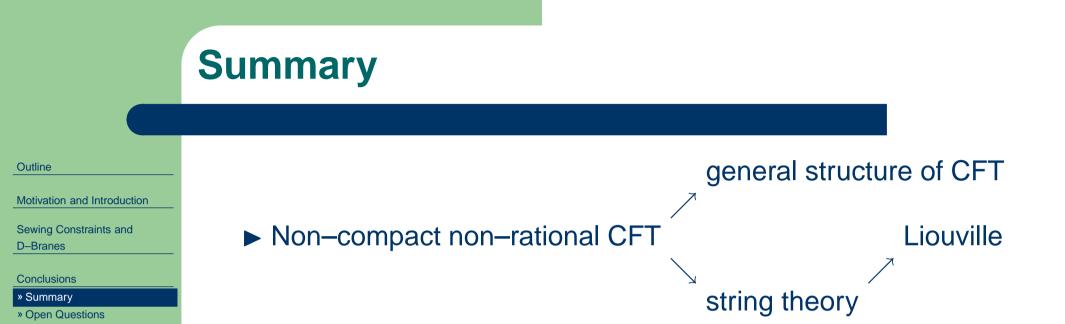
Conclusions

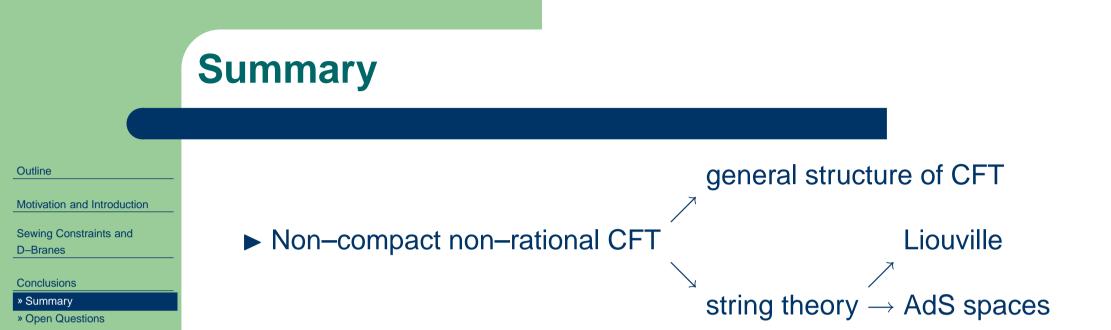
» Summary

» Open Questions

► Non-compact non-rational CFT

	Summary
Outline Motivation and Introduction Sewing Constraints and D–Branes	general structure of CFT ► Non–compact non–rational CFT
Conclusions » Summary » Open Questions	





Summary general structure of CFT 7 Motivation and Introduction Liouville Sewing Constraints and ► Non-compact non-rational CFT **D**–Branes Conclusions string theory \rightarrow AdS spaces » Summary » Open Questions

Outline

non-compact curved vacua

Outline

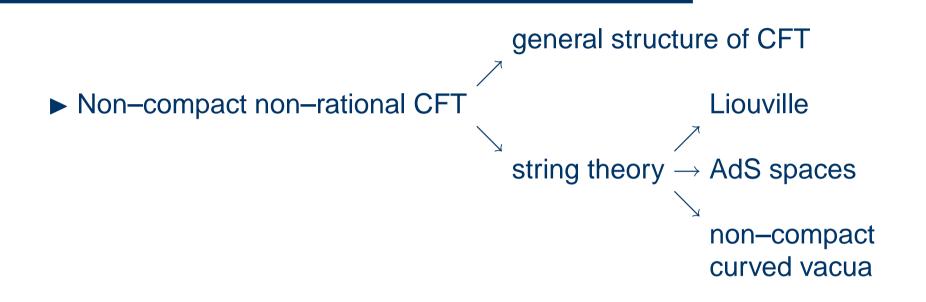
Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions



Relation: Liouville/H₃⁺ (reminiscent of RCFT: minimal models/sû(2) WZNW)

Outline

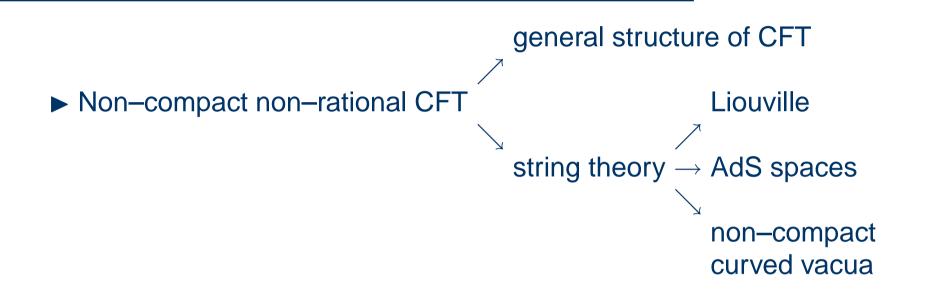
Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions



- Relation: Liouville/H₃⁺ (reminiscent of RCFT: minimal models/sû(2) WZNW)
- ► Our work: Factorization Constraint in Boundary H₃⁺

Outline

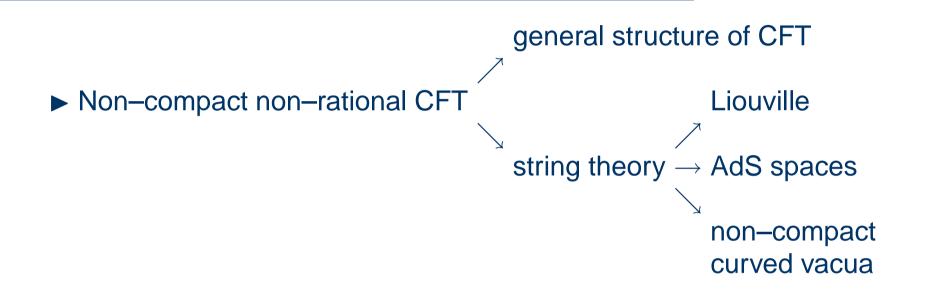
Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions



- Relation: Liouville/H₃⁺ (reminiscent of RCFT: minimal models/sû(2) WZNW)
- Our work: Factorization Constraint in Boundary H_3^+
 - "Weak" form (continuity proposal from Liouville/H₃⁺)

[Adorf,Flohr'07]

Outline

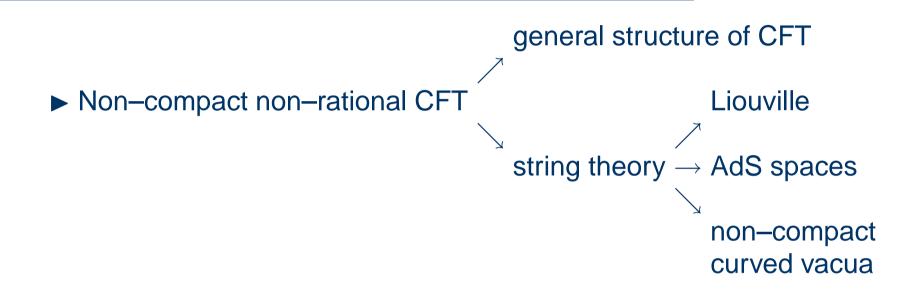
Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions



- Relation: Liouville/H₃⁺ (reminiscent of RCFT: minimal models/sû(2) WZNW)
- Our work: Factorization Constraint in Boundary H_3^+
 - "Weak" form (continuity proposal from Liouville/H₃⁺)

[Adorf,Flohr'07]

• "Strong" form (analytic continuation)

```
[Adorf,Flohr'08]
```

Outline

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

Outline

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

Outline

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

► Immediate Qs from our work:

• new insights into Liouville/ H_3^+ relation?

\cap	utl	lin	0
U	uu		e

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

- new insights into Liouville/ H_3^+ relation?
- (how) can we decide which form of the constraint is preferable?

0	utli	ine
---	------	-----

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

- new insights into Liouville/ H_3^+ relation?
- (how) can we decide which form of the constraint is preferable?
- generic of non-compact non-rational CFT?

Out	line
-----	------

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

- new insights into Liouville/ H_3^+ relation?
- (how) can we decide which form of the constraint is preferable?
- generic of non-compact non-rational CFT?
- ► Other Qs:

0	ut	lir	ne
---	----	-----	----

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

- new insights into Liouville/ H_3^+ relation?
- (how) can we decide which form of the constraint is preferable?
- generic of non-compact non-rational CFT?
- ► Other Qs:
 - more examples

0	ut	lir	ne
---	----	-----	----

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

- new insights into Liouville/ H_3^+ relation?
- (how) can we decide which form of the constraint is preferable?
- generic of non-compact non-rational CFT?
- ► Other Qs:
 - more examples
 - generalizations of Liouville/ H_3^+ relation

0	utli	ine
---	------	-----

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

- new insights into Liouville/ H_3^+ relation?
- (how) can we decide which form of the constraint is preferable?
- generic of non-compact non-rational CFT?
- ► Other Qs:
 - more examples
 - generalizations of Liouville/ H_3^+ relation
 - general structure of non-compact non-rational CFT

0	utli	ine
---	------	-----

Motivation and Introduction

Sewing Constraints and D–Branes

Conclusions

» Summary

» Open Questions

Immediate Qs from our work:

- new insights into Liouville/ H_3^+ relation?
- (how) can we decide which form of the constraint is preferable?
- generic of non-compact non-rational CFT?
- ► Other Qs:
 - more examples
 - generalizations of Liouville/ H_3^+ relation
 - general structure of non-compact non-rational CFT

... based on Hendrik Adorf and Michael Flohr: arXive:0707.1463 arXive:0801.2711