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Abstract

In this thesis, important features of two dimensional bond percolation on an infinite
square lattice at its critical point within a conformal field theory (CFT) approach are
presented. This includes a level three null vector interpretation for Watts’ differential
equation [78] describing the horizontal vertical crossing probability within this setup.
A unique solution among the minimal models, c(6,1) = −24 seems to be a good candi-
date, satisfying the level two differential equation for the horizontal crossing probability
derived by Cardy [7] as well.

Commonly assumed to be a truly scale invariant problem, percolation nevertheless is
usually investigated as a c = 0 CFT. Moreover this class of CFTs is important for the
study of percolation or quenched disorder models in general. Since c(3,2) = 0 as a min-
imal model only consists of the identity field, following Cardy [9] different approaches
to get a non trivial CFT whose partition functions differ from one as suggested by the
work of Pearce and Rittenberg [69] are presented. Concentrating on a similar ansatz for
logarithmic behavior as for the triplet series (c(p,1)), we examine the properties of such
a CFT based on the extended Kac-table for c(9,6) = 0 using a general ansatz for the
stress energy tensor residing in a Jordan cell of rank two. We will derive the interesting
OPEs in this setup (i.e. of the stress energy tensor and its logarithmic partner) and
illustrate it by a bosonic field realization. We will give a motivation why the augmented
minimal model seems to be more promising than the previous approaches and present
an example of a tensor construction as a fourth ansatz to solve the c → 0 problem as
well.
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Introduction

In 1984, conformal field theory (CFT) has been invented by Belavin, Polyakov and Zamoldichikov
[4] as a suitable description for scale invariant one-dimensional quantum or two-dimensional clas-
sical problems, occurring mostly in the fields of statistical and condensed matter physics (i.e. the
critical Ising model) or string theory. They are characterized by one parameter, the so-called cen-
tral charge, which is related to the trace of the stress energy tensor and thus proportional to the
Casimir energy (the change in vacuum energy density due to a change of the macroscopic scale).
Hence the case of vanishing central charge arises when the macroscopic scale approaches infinity,
meaning that CFTs with c = 0 are truly scale invariant. Usually, a special subclass of rational
CFTs (i.e. with c ∈ Q) is investigated and we will concentrate on it in this thesis, too.

Famous examples of CFTs are the Ising model with central charge c = 1/2 which can be generalized
to the Q-state Potts model [70] exhibiting a central charge of c = 1 − 6

m(m−1) which is related

to the number of different possible spin states, Q, via
√
Q = −2 cos2(π/m), the abelian Sandpile

model with c = −2 or the (fractional) Quantum Hall effect. Most known models belong to the so
called minimal models (the special subclass of rational CFTs as we have called them before) where

the central charge can be characterized by two coprime parameters, p > q, via c(p,q) = 1− 6 (p−q)2

pq .
They are called minimal models since they only consist of a usually small and always finite set of
1
2 (p− 1)(q − 1) primary fields and their descendants.

Nine years later, Gurarie [39] observed the appearance of logarithmic singularities in correlation
functions of certain CFTs. The first and best studied example for theories with this behavior is
c(2,1) = −2 which belongs to a special subclass of the minimal models, i.e. the c(p,1) CFTs, whose
Kac-table is empty in the standard formalism for minimal models. Thus they are technically
described by c(3p,3) and are all known to contain indecomposable representations and thus exhibit
logarithmic behavior. Due to this feature, these theories are called logarithmic CFTs (LCFTs).
It is conjectured that all rational CFTs can be extended to LCFTs by taking the augmented Kac
table for p, q → (2n+ 1)p, (2n+ 1)q (n ∈ N).

(L)CFTs describe the critical behavior at so-called second order phase transitions or continuous
transitions, where (in contrast to first order transitions) we do not have a finite jump in some
macroscopic observable (e.g. the temperature) itself but observe singular behavior in its deriva-
tive. In the Ising model, for example, this phase transition occurs at the self dual point of the
model which is defined through the relation between the high temperature disordered and the low
temperature ordered phase of the spins.

Conformal field theories are especially interesting to study in these two dimensional systems. For
any higher dimension, conformal invariance is nothing more than the invariance under translations,
dilations, rotations and special conformal transformations, but, in two dimensions, the conformal
(Virasoro-)algebra turns out to be infinite dimensional. The high symmetry in two dimensions
imposes severe constraints on the available models which is the reason for the fact that in the case
of minimal models their properties are solely fixed by their central charge.

This thesis will concentrate on a very special case of conformal field theories whose properties
have been under constant quarrel for the last years - the case of vanishing central charge. It is
widely believed to describe quenched disorder problems, self-avoiding polymers and, above all,
percolation. Percolation is a very suitable showcase since its properties are very well known due
to various numerical calculations. In most cases, bond percolation on an infinitely large square
lattice, whose bonds are open (or closed) with a probability p (or (1−p)), is investigated. Studying
percolation means asking the question how probable it is that there exists a crossing from one to
another side at the critical probability for bonds to be open or closed: pc = 1 − pc = 1/2. The
critical probability pc is the point at which the crossing probability as a function of p jumps from
zero to one. A less scientific examples would be the preparation of espresso, which, in english, as
a matter of fact can be referred to as “percolating coffee”.
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Since the early nineties, percolation has been of interest to mathematical physicists, e.g. John
Cardy [7], who found that the two solutions of a second order differential equation describing the
horizontal crossing probability in two dimensional bond percolation can formally be obtained from
a c = 0 minimal model and thus rational CFT with a differential operator acting on a correlation
function of four h = 0 fields. Starting from this point, G. M. T. Watts [78] motivated a fifth
order differential equation which should describe the horizontal vertical crossing probability. This
equation can be simplified to a third order differential equation which, however, lacks a consistent
interpretation as a level three null vector condition within the c = 0 conformal field theory.

Cardy’s results have been checked by numerical simulations (e.g. see Langlands et. al. [56]) and
turned out to be extremely successful. In addition, they have been compared to the results of
Stochastic or Schramm Loewner Evolution (SLE (κ)) describing the random walk of speed κ of
some particle in the upper half complex plane hitting the real axis several times. Depending on
which part of the real axis it hits first, this situation corresponds to having a horizontal crossing
after a conformal transformation or not. SLE(κ) can be extended to SLE(κ, ρ) (i.e. multiple random
walks) which has been used by Dubedat in 2004 to proof an SLE interpretation of Watts’ third
order differential equation.

In this thesis, this third order differential equation will be given an LCFT interpretation, being
the only possible Kac table based CFT including Watts’ differential equation as a level three null
vector condition. Surprisingly, the resulting theory is not the from former considerations expected
c = 0 CFT but one of the c(p,1) set, namely with p = 6 and thus c = −24. After further research
on the arguments for c = 0 it comes to notice that the conditions derived up to now only fix the
central charge up to 24 which is due to the modular properties of CFTs. Thus c = −24 seems to
be an interesting alternative to the c = 0 assumption for percolation.

Although our results suggest otherwise, we do not wish to rule out the c = 0 ansatz for percolation
completely. Thus, it is interesting and necessary to shed some light on this struggling CFT. There
has already been extensive research about the c = 0 case and its proper treatment within a CFT
setup, e.g. whether it should be described by a non-rational CFT or via a Kac-table based ansatz.
From the work of Pearce and Rittenberg [69] it is known, that there are applications where its
field content should extend the Kac table of the usual minimal model c(3,2) = 0 since they found
a deviation of the partition function from one and, particularly, a weight h = 1/3 field, which is
present in the extended Kac-table. Due to divergences in the OPE of two primary fields in a CFT
with vanishing central charge, the usual approach is the assumption of a Jordan cell connection of
the stress energy tensor T (z) with a new field, its so-called logarithmic partner t(z). It is assumed
to be generated by L0, the zeroth mode of the Laurent expansion of T (z) and to be of rank
two. The indecomposable connection of these two fields is a crucial property, otherwise we could
separate them again by a change of basis which would not solve the divergence problem. Within
this ansatz,several approaches can be chosen, e.g. strictly based on Kac table fields (eventually
extending it similar to the c(p,1) LCFTs) or including fields outside the conformal grid and thus
being non-rational.

The first approach leads to a c(9,6) = 0 LCFT with a rank two Jordan structure for the fields of the
boundary on the Kac table and a rank three structure for those inside, leaving those on the corners
in usual irreducible representations. Research on the precise structure of these models is currently
going on [24]. The non-rational LCFT ansatz has already been discussed in the literature, e.g. by
Kogan and Nichols [53] or Gurarie and Ludwig [41]. In contrast to the one based on the extended
Kac-table which will be discussed in this thesis, it excludes a Jordan cell structure for the identity
and thus t(z) has to lie outside the Kac table. Both are looking for states that are non orthogonal
to L−2|0〉 = T (0)|0〉 to ensure that this state does not vanish. This turns out to be rather difficult
since there are no predictions for the exact form from symmetry algebras of c = 0 so far and the
structure of the representations contained in c = 0 is still unknown. An additional difficulty arises
for the second ansatz since a priori there are no constraints on fields outside the Kac table.
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Outline

In this section, we give a short summary of the five parts of this thesis.

In the first chapter some excerpts from introductions to (L)CFT will be given requiring basic
knowledge of field theories and algebra, particularly of Lie algebras and central extensions. Ba-
sically following the approach of Di Francesco [14] (with some aspects taken from Gaberdiel [31],
Ginsparg [36] and Cardy [8] as well), we will go through some general statements on the conformal
group and the consequences of conformal invariance in general and especially in two dimensions,
introducing objects like the conformal Ward identities, the concept of the conformal generators Ln,
primary fields and correlation functions as well as operator product expansions (OPEs) and a brief
excursus on the central charge and its physical meaning. Additionally some features of the stress
energy tensor will be stated, particularly its form in a free Boson construction as well as minimal
models, including Verma modules, the Kac table and null vectors. At the end of the first part we
will give an overview on selected aspects that change when considering logarithmic conformal field
theory. If not denoted otherwise, the LCFT material can be found in Flohr’s “Bits and pieces in
logarithmic conformal field theory” [23].

The second chapter will concentrate on a brief discussion of c = 0 candidates. We will present the
various possible models of percolation, e.g. bond or site percolation on square or triangular lattices
and their various applications such as forest fires or resistance networks. In the second half of this
chapter we will discuss how percolation can be formulated in theory, including statistical physics,
CFT and SLE approaches. The literature for the phenomenological part of this chapter can be
found in Grimmett [37] whereas the link to conformal field theory and Stochastic (or Schramm)
Loewner Evolution (SLE) is taken from Cardy [8, 10].

In the third chapter, the implications of numerical simulations of percolation will be treated fol-
lowing the content of our first paper [28]. Particularly, we will apply our knowledge gained in the
first chapter, above all the null vector conditions of the second and third level (with derivations in
the appendix),to the research of Cardy [7] and Watts [78] to derive answers to the open questions.
Additionally, c(6,1) = −24 will be tested on all statements formerly used within c = 0 as percola-
tion, including its modular properties and field content. This will be followed by a brief covering
of SLE implications for percolation, pointing out the limits of constraints from this side as well as
confirming conclusions.

The fourth chapter will deal with the contents of our second paper [27]. Discussing divergence
problems at c→ 0, following Cardy [9] we will present four solutions, of which one is trivial (c = 0
as a minimal model), only consisting of the identity. Two solutions use different LCFT approaches,
of which the first is based on the c(9,6) = 0 augmented minimal model and thus a rational LCFT.
Since it has not been discussed in papers before, our presentation of this approach will dominate
the main part of the fourth chapter as our solution to the c → 0 catastrophe, constructing the
operator product expansions for the two interesting operators – the stress energy tensor and its
logarithmic partner field – within this ansatz. Additionally we present a fourth loophole (a tensor
ansatz) at the end of the discussion and give examples for this approach and the rational LCFT.
The second of the two LCFT solutions (the non-rational ansatz chosen by Kogan and Nichols [53]
or Gurarie and Ludwig [41]) includes fields outside the Kac table without a logarithmic partner
for the identity. After a brief introduction to this approach, we will present several arguments
why in our opinion the such an LCFT approach to the c→ 0 catastrophe is less suitable than the
Kac-table based ansatz introduced in our paper.

This will conclude the research part of this thesis, leaving the fifth chapter for remarks, conclusions
and an outlook where further research on this subject needs to be done.
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1. Conformal Field Theory

1.1. The conformal group

In d dimensions, the conformal transformations consist of

• translations: xµ → x
′µ = xµ + aµ,

• dilations: xµ → x
′µ = αxµ,

• rigid rotations: xµ → x
′µ = Mµ

ν x
ν and

• special conformal transformations: xµ → x
′µ = xµ−bµx2

1−2bx+b2x2 .

In two dimensions, things can be simplified. Considering the complex coordinates z = z0 +iz1 and
z̄ = z0 − iz1 and enforcing that any conformal transformation, (z, z̄) → (w(z, z̄), w̄(z, z̄)), should
leave the metric tensor invariant up to a scale, we see that the conditions arising are just the
Cauchy-Riemann equations

∂z̄w(z, z̄) = 0 and ∂zw̄(z, z̄) = 0 . (1)

The solutions for the former (latter) are (anti)holomorphic mappings of the complex plane onto
itself. Thus the conformal group in two dimension is nothing else than the set of all analytic
maps. It is infinite dimensional since the Laurent series f(z) =

∑

n fnz
n has an infinite number

of parameters, determining the behavior of any analytic function in a small disc around any point
by definition. The group multiplication, of course, is the composition of such mappings.

Thus it is obvious, that in two dimensions, due to the infinite symmetry (Virasoro-) algebra we
have a very special and restrictive situation and thus there is hope for concrete predictions of our
two dimensional conformal field theory.

There are six special generators among the infinite set contained in the symmetry algebra, which
can be integrated to the global conformal group generating the so-called special conformal trans-
formations (or as well Moebius transformations) and given by

f(z) =
az + b

cz + d
with ad− cb 6= 0 . (2)

These are the only possible globally defined holomorphic mappings. Analogously, this can be
written down for the antiholomorphic case, too, to get the other three parameters. It can easily
be verified that the global conformal group is isomorphic to SL(2,C) ∼= SO(3, 1).

1.2. N-point functions and correlators

1.2.1. The transformation of primary fields

It can be shown, that under a conformal map z → w(z) = z + ǫ(z) any primary field φ(z) with
conformal weight h transforms as

φ(z) → φ′(w) =

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

−h

φ(z) , (3)

introducing the scale factor
∣

∣

dw
dz

∣

∣ which is the same scale factor allowed as a transformation of
the metric under conformal mappings. Thus, for an infinitesimal transformation, expanding the
mapping into its Laurent series, yields

δǫφ(z) ≡ φ′(w) − φ(z) = −hφ∂zǫ(z).
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Fields that transform this way under any local conformal transformation are called primary fields.
Any field which is not primary is generally called secondary. A fact which might be bemusing is
that there may be fields which are primary and secondary at the same time, e.g. the stress energy
tensor at c = 0.

1.2.2. Correlation functions

From the property (3) follows immediately that the two-point function of two spinless fields is
proportional to their distance, meaning that

〈φ1(z1)φ2(z2)〉 =

{

C12

|z1−z2|2h1
for h1 = h2

0 for h1 6= h2

, (4)

and, analogously,

〈φ1(z1)φ2(z2)φ3(z3)〉 =
C123

|z1 − z2|h1+h2−h3 |z2 − z3|h2+h3−h1 |z1 − z3|h3+h1−h2
. (5)

The first non trivial n-point function is the four-point function, depending on the so called cross
(or anharmonic) ratio of the coordinates η1 = z01z23

z02z13
(or η2 = z01z23

z12z03
) with zij = |zi − zj |. Hence

the four-point function is given by

〈φ0(z0)φ1(z1)φ2(z2)φ3(z3)〉 = F (η1, η2)
3
∏

i<j

z
H/3−hi−hj

ij (6)

with H =
∑3

i=0 hi. We can transform any four-point function to a form in which three of the fields
are taken at fixed points, most times chosen to be z1 → 0, z2 → 1 and z3 → ∞. Here z0 → z is
the only independent variable on which the correlator depends contrary to the case of the two and
three point functions which are completely fixed up to a normalization constant.

In general, four-point functions can be reduced to three-point functions with the help of the
operator algebra,

φ1(z)φ2(0) =
∑

p

∑

{k}
C

p{k}
12 zhp−h1−h2+Kφ{k}

p (0) , (7)

with K =
∑k

i=1 ki and {k} = {k1, . . . , kl}. The coefficients C
p{k}
12 are the coefficients of the possible

three point functions including φ2(0), φ1(z) and any φp(∞) such that the three point function does
not vanish. Thus any OPE of primary fields or their descendants can be deduced from the form
of their respective three-point functions or by a differential equation F (z) has to solve.

The discussion of symmetries of n-point functions will be omitted here and can be found e.g. in
Di Francesco [14].

1.2.3. The conformal Ward Identities

Although it is not the original form of the Ward identities, the most convenient way to denote
them is the following formula:

δǫ〈X〉 = − 1

2πi

∮

C

dz ǫ(z)〈T (z)X〉 . (8)

with z → z + ǫ(z) being an infinitesimal conformal transformation as introduced in (3). Thus the
conformal Ward identities relate the variation of some n-point function X = φ0(z0) . . . φn−1(zn−1)

12



under a local conformal transformation to the stress energy tensor T (z) (which is assumed to be
regular). The contour C has to include all fields contained in X (i.e. the contour runs around all
points zi). For primary fields we know that δǫφ(z) = 0 for global conformal transformations and
thus we can deduce three conditions for n-point functions from the Ward-identities (8)

∑

i

∂zi
〈X(z01, . . . , zn−1)〉 = 0 , (9)

∑

i

(zi∂zi
+ hi)〈X(z0, . . . , zn−1)〉 = 0 , (10)

∑

i

(z2
i ∂zi

+ 2zihi)〈X(z0, . . . , zn−1)〉 = 0 . (11)

1.2.4. Free fields and the operator product expansion for chiral local operators

As commonly known, singularities arise in correlation functions when the coordinates on which
the involved fields depend approach each other. To state the behavior of these divergences, the
operator product expansion (OPE) is introduced. It consists of a sum of well defined operators,
multiplied by a possibly divergent function of the two coordinates as they approach each other.
Thus, in general, we have

A(z)B(w) =
N
∑

n=−∞

{AB}n(w)

(z − w)n
. (12)

In practice, the contributions of the OPE may be calculated via the Wick theorem or known two
and three-point functions (see (7)). For non-chiral or non-local operators, the condition n ∈ Z
does not hold any more.

1.3. The central charge

The OPE of the stress energy tensor with itself,

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
, (13)

where ∼ means equality modulo the non divergent parts as z → w which are omitted in the OPE,
is obviously not the same as expected for a primary field (if c 6= 0). In fact, T (z) is only quasi
primary and thus exhibits a term proportional to (z − w)−2h in the OPE with itself which comes
with a constant c, the so called central charge depending on the CFT in which it is defined. There
is always a way to find a free Boson realization for the stress energy tensor for any central charge
c = 1 − 24α2

0:

T (z) =
1

2
:∂ϕ∂ϕ:(z) + i

√
2α0:∂

2ϕ:(z) . (14)

The central charge or conformal anomaly shows up when a macroscopic scale is introduced into
the system. It corresponds to a soft breaking of conformal symmetry since for c 6= 0 the theory is
not truly scale invariant any more. It can be shown to be proportional to the Casimir energy or
the free energy per unit length of a periodic statistical system. The central charge may also differ
from zero while investigating CFTs on a curved space.
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1.4. Conformal generators and the Hilbert space

1.4.1. Radial quantization

t

x

t = −∞

t = ∞
t = −∞ •

t = ∞

t

x

Figure 1: Deformed cylinder mapped onto the complex plane.

In radial quantization, the space direction is chosen to be along concentric circles centered at the
origin and time the distance of any point to the origin. This can easily be obtained by compactifying
space on a cylinder with circumfence L while the time is along the flat direction. Deforming this
cylinder with a mapping z = exp(2π(t + ix)/L), we find ourselves on the Riemann sphere with
t = −∞ representing the origin z = 0 and t = +∞ lying at z = +∞.

Within our radial quantization, the time ordering corresponds to radial ordering , i.e.

RΦ1(z)Φ2(w) =

{

Φ1(z)Φ2(w) if |z| > |w|
±Φ2(w)Φ1(z) if |w| > |z| , (15)

where ± stands for Bosons or Fermions, respectively. Within correlation functions, all fields have
to be time ordered (which means radially ordered) for the left hand side to be a well defined
operator.

•

•

•

•

•

•

0 0 0

w w w

−=

Figure 2: The commutator in radial ordering. Suppose A =
∮

a(z)dz. Then the commutator
[A, b(w)] is given by

∮

a(z)b(w)dz wherein we can insert the OPE and thus calculate the
value of the commutator.
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From contour integration it is obvious that the equal time commutator of two variables A =
∮

a(z)dz and B =
∮

b(w)dw can be written as

[A,B] = [

∮

a(z)dz,

∮

b(w)dw] =

∮

0

dw

∮

w

dz a(z)b(w). (16)

An illustrative example can be found in figure 2.

1.4.2. Asymptotic states

Since the concept of Hilbert spaces is extremely useful in theoretical physics, we assume the
existence of a vacuum state |0〉 from which we can build up the whole space by applying creation
operators L−n. In complete analogy to ordinary field theories, we define asymptotic fields φin ∝
limz→0 φ(z) and the corresponding operator |φin〉 = limz→0 φ(z)|0〉. Keeping the custom that
positive frequency states annihilate this vacuum, we have to introduce the mode expansion of
conformal fields as follows

φ(z) =
∑

n∈Z z−n−hφn (17)

φn =
1

2πi

∮

dz zn+h−1φ(z) . (18)

Thus in order to get a regular expression for z → 0, we have to require φn|0〉 = 0 for n > −h. The
Hermitian conjugate now is obviously denoted by φ†n = φ−n.

A concrete example is the expansion of a free boson which reads as

ϕ(z) = ϕ0 − iπ0 log(z) + i
∑

n6=0

1

n
anz

−n . (19)

Obviously, ϕ(z) is not primary, contrary to its derivative ∂ϕ(z) = −i∑n anz
−n with an = π0.

1.4.3. The conformal generators

Applying what we have just learned to the conformal Ward identities (8), we observe that they
translate into

δǫφ(z) = − 1

2πi

∮

C

dz ǫ(w)T (w)φ(z)

= −[Qǫ, φ(z)] , (20)

where Qǫ denotes the conformal charge given by Qǫ = 1
2πi

∮

dz ǫ(z)T (z) with ǫ(z) =
∑

n∈Z ǫnzn.
Writing down the mode expansion of the stress energy tensor as a weight two field

T (z) =
∑

n∈Z z−n−2Ln , (21)

Ln =
1

2πi

∮

dz zn+1T (z) , (22)

we see that after an expansion of the conformal transformation, the conformal charge is in fact
given by

Qǫ =
∑

n∈Z ǫnLn . (23)

The Ln are the so-called the conformal generators for the infinitely many local conformal transfor-
mations of the Hilbert space. L±1 and L0 form a closed subalgebra generating the global conformal
(or SL(2,C)) transformations. Particularly, L0 + L̄0 generate the dilations or time translations in
radial ordering and therefore are proportional to the Hamiltonian of the system.
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1.4.4. The Virasoro algebra

The algebra of the conformal generators for the holomorphic and the antiholomorphic part is a
direct sum of two Virasoro algebras, i.e.

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 , (24)

which can be computed by inserting (22) into (16).

Some facts about the Hilbert space can easily be seen at this point. Since we claim that the energy
momentum tensor shall be well defined for z → 0 which means that T (z)|0〉 is non divergent in
this limit, taking equation (21) into account, we know that for n ≥ −1 we have Ln|0〉 = 0 should
hold when.

Computing the commutator of the Ln with some primary field of weight h,

[Ln, φh(z)] = h(n+ 1)znφh(z) + zn+1∂zφh(z) , (25)

for all n ≥ −1, we see that for the z → 0 limit and n = 0, primary field states are eigenstates of
the Hamiltonian, since L0φh(0) = hφh(0). We will denote it by |h, h̄〉 = φh,h̄(0)|0〉 as an eigenstate

of H ∝ L0 + L̄0 with eigenvalue h+ h̄.

1.4.5. Descendant fields

To any primary field of dimension h belongs a tower of so called descendant fields, p(n) (partitions
of the number n) on each level n with conformal weight h+ n. They are built by application of a
set of L−{n} on the asymptotic state |h〉, i.e. a descendant of level n is given by

φ−{n}(w) ≡ L−k1L−k2 · · ·L−kl
φh(w) =: L−{n}φh(w) , (26)

with
∑

i ki = n and kl ≥ . . . ≥ k1. Within a correlation function, the action of the Ln on the
asymptotic state can be expressed by a differential operator using (25)

〈φ−n(w)X〉 ≡
∑

|{n}|=n

β{n}L−{n}〈φh(w)X〉 , (27)

with

L−n =
∑

i

(

(n− 1)hi

(wi − w)n
− 1

(wi − w)n−1
∂wi

)

. (28)

The set of a primary field and all its descendants is called a conformal family. The action of the
stress energy tensor on one of its members will (by definition) only yield members of this family
again.

The states obtained by applying our primary fields to the vacuum, φh|0〉 = |h〉, are highest weight
states with respect to the Virasoro algebra, obeying

L0|h〉 = h|h〉 , (29)

Ln|h〉 = 0 for n > 0 . (30)

The so called Verma module V (c, h) consists of all descendant states of a certain highest weight
state |h〉 and thus our Hilbert space is a direct sum of all available Verma modules of the system,
i.e. H =

⊕

h,h̄Mh,h̄V (c, h) ⊗ V (c, h̄), with Mh,h̄ most commonly being a diagonal matrix. Terms
of the same conformal weight are not excluded in the sum and it is not required to be finite.

16



To each Verma module, a generating function can be assigned which is called the character of the
module, defined by

χ(c,h)(τ) = Tr qL0− c
24

=

∞
∑

n=0

dim(h+ n)qn+h− c
24 , (31)

with q ≡ exp(2πiτ) and dim(h+ n) denoting the number of linearly independent states at level n
of the module. The exponent c/24 is a remnant of the modular properties of the CFT.

1.5. Minimal models and the Kac-table

From commutativity and associativity of the OPE, constraints on the operator algebra can be
deduced. These translate into constraints on the OPE which means that certain fields do not arise
for a given value of the central charge. For the special subclass of the rational CFTs, the minimal
models, i.e. with central charges parameterized by two coprime integers p > q, c = 1−6(p−q)2/(pq),
it can be shown that from the otherwise infinite number of conformal fields that can be present in
the theory, only a finite set of primary fields (with infinitely many descendants) is allowed to show
up. Following Belavin, Polyakov and Zamolodchikov [4] we see that the allowed values of h(c) are
given by the Kac determinant

detM l = αl

∏

r,s≥1,rs≤l

(h− hr,s(c))
p(l−rs) = 0 , (32)

with p(l − rs) being the number of all partitions of the positive integer l − rs and αl a positive
constant depending on h. Thus the allowed weights for the central charges may be expressed by

h(r,s) =
(pr − qs)2 − (p− q)2

4pq
, (33)

c(p,q) = 1 − 6
(p− q)2

pq
, (34)

with p, q being coprime.

For p = q + 1 these theories are unitary, meaning that they do not contain any negative norm
states. Arranging the conformal weights h(r,s) on a grid, we get the so called Kac-table which is
symmetric in r → q−r and s→ p−s. Thus it is sufficient to state the Kac-table for 1 ≤ r < q and
1 ≤ s < p and identify those states that correspond to each other under this symmetry. We have
1
2 (p−1)(q−1) independent primary fields in each Kac-table. These theories contain an infinite set
of null vectors within each Verma module V(h,c) and are therefore referred to as minimal models
M(h,c) when those null states have been divided out. Of course, their field content is still solely
made up out of the finite number of local fields that form the Kac-table and their descendants.

1.5.1. An example: The Ising model

A famous example of the minimal models is the Ising model. From all non trivial minimal models,
it has the smallest Kac-table with a central charge of c(4,3) = 1/2, which is given by1h=0 σh= 1

16
ǫh= 1

2

ǫh= 1
2

σh= 1
16

1h=0

, (35)
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with σ representing the lattice spin and ǫ the interaction energy between two nearest neighboring
spins.

In statistical physics it is built by N spins on a lattice which can occupy one of two possible states
usually denoted by ±1. The partition function of the system depends on the energy between two
nearest neighbor spins (σi, σj) in the same state minus the energy of those in different states. Thus
the partition function is given by

Z =
∑

{σ}
exp



−β
∑

〈ij〉
E〈ij〉



 , (36)

where E〈ij〉 denotes the energy per link −Jσiσj .

While in one dimension there is no phase transition, in two dimensions we have one of second order,
namely between an ordered phase at low temperature and a disordered phase at high temperature.
Between those two phases the Kramers-Wannier duality is established and defines the fixed point
of the temperature. As a very simple model for ferromagnetism, its critical temperature is well
known to be the Curie temperature:

βJc = −1

2
ln(

√
2 − 1) . (37)

From the duality relation, a new operator (dual to the spin operator) arises which we call disorder
operator µ. Interchanging those two operators switches from low to high temperature in the
model.

In CFT, two critical exponents arise in the two-point correlation functions of

〈σiσi+n〉 =
1

|n|η , (38)

〈εiεi+n〉 =
1

|n|4−2/ν
, (39)

with η and ν being the critical exponents of the Ising model.

The Ising model is equivalent to the free Majorana fermion where the energy density corresponds
to the fermion mass ψ̄ψ. The Majorana fermions are given by ψ(z) ∝ φ(2,1)(z) ⊗ φ(1,1)(z) and
ψ̄(z̄) ∝ φ(1,1)(z̄) ⊗ φ(2,1)(z̄) and the spin is given by σ(z, z̄) ∝ φ(1,2)(z) ⊗ φ(1,2)(z̄) whereas the
interacting energy is ε(z, z̄) = i : ψψ̄ : (z, z̄) ∝ φ(2,1)(z) ⊗ φ(2,1)(z̄).

The underlying Z2 symmetry reflects the temperature duality relation. Away from the critical
point, the Ising model is no longer scale invariant and a mass term arises in the Ising action

S =
1

2π

∫

d2z (ψ∂̄ψ + ψ̄∂ψ̄) . (40)

Vertex operators Since the free boson ϕ has vanishing scaling dimensions, it is possible to con-
struct primary fields by exponentiating without the need to introduce a scale. Defining a vertex
operator of weight h(a) = a2 − 2aα0 as

Va(z) = exp(iα
√

2ϕ) , (41)

it can easily be shown that Va is primary. In minimal models, vertex operators whose charges differ
by 2α0 can be identified. This is allowed due to the insertion of screening charges into correlation
function, Qn

±, which do not affect the conformal properties of the correlators and thus do not
change its physical properties.
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Taking two (non interacting) Ising models with c = 1
2 + 1

2 = 1 yields a model which has a one to
one correspondence to the free bosonic field at c = 1. This can easily be seen when regarding the
free complex Dirac fermion

D(z, z̄) =

(

D(z)

D̄(z̄)

)

=
1√
2

(

ψ1 + iψ2

ψ̄1 + iψ̄2

)

(z, z̄) , (42)

which is equivalent to D(z) = exp(iϕ(z)) and analogously D̄(z̄) = exp(iϕ̄(z̄)). This is one of
many possible examples where vertex operators may arise and in general is called “Bosonization”.
Within the Coulomb gas formalism this is a very helpful technique to find bosonic realizations for
given models.

1.5.2. Null vectors and differential equations for correlation functions

Any state |χ(n)
(h,c)〉 which vanishes under all action of the conformal generators Lk generates a Verma

module Vχ within the original module. It is called null state and corresponds to a secondary field
which has all properties of a primary field. Quotienting all Verma modules generated by null states
out of the original module, we get an irreducible representation, M(c,h).

The explicit form of null vectors on level n in a minimal model can be found by consequently

acting on a generic state |χ(n)
(h,c)〉 =

∑

|{n}|=n β
{n}L−{n}|0〉 with the conformal generators Lk with

k ≤ |{n}|, requiring the results to vanish.

This way we obtain two examples, e.g. for the second and third level:

|χ(2)
(h,c)〉 =

(

L−2 −
3

2(2h+ 1)
L2
−1

)

|h〉 , (43)

h(2) =
1

16

(

5 − c±
√

(c− 1)(c− 25)
)

, (44)

|χ(3)
h,c〉 =

(

L3
−1 − 2 (h+ 1)L−2L−1 + h (h+ 1)L−3

)

φh , (45)

h(3) =
1

6

(

7 − c±
√

(c− 1)(c− 25)
)

. (46)

As stated above, from these null vectors follow differential equations for the four-point function,
leaving n possible solutions for F (η), or, after taking the usual limit ({z0, z1, z2, z3} → {z, 0, 1,∞}),
F (z).

The calculations for the differential equations are presented in the appendix, therefore here we will
only state the results for the second level (h = h(2)),

(

3

2(2h+ 1)

d2

dz2
+

2z − 1

z(z − 1)

d

dz
− h1

z2
− h2

(z − 1)2
+
h+ h1 + h2 − h3

z(z − 1)

)

F (z) = 0 , (47)

and for the third level (h = h(3)),

0 =

[

d3

dz3
+ 2(h+ 1)

2z − 1

z(z − 1)

d2

dz2

+ (h+ 1)

(

h− 2h1

z2
+
h− 2h2

(z − 1)2
− 2

h3 − h− h1 − h2

z(z − 1)
+

h

z(z − 1)

)

d

dz

+ h(h+ 1)

(

−2h1

z3
− 2h2

(z − 1)3
+

(2z − 1)(h+ h1 + h2 − h3)

z2(z − 1)2

)]

F (z) . (48)
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1.5.3. Fusion rules

In order to see which fields can arise in the OPE of primary fields, we have to check how their
representations behave under fusion. For minimal models this may be motivated through null
vectors and the OPE but we will only state the outcome here.

The commutative and associative fusion algebra, which is generated by the φj , j = 1, . . . , r with
φ1 = 1 and the fusion product ×, is defined by its multiplication rule

φi × φj =
∑

k

N k
ijφk. (49)

For minimal models, we have N k
ij ∈ {0, 1}, while the coefficient vanishes if the structure constant

in the corresponding OPE is zero. Thus it is given by

φ(r,1) × φ(k,l) =

k+r−1
∑

m=k−r+1
m−k+r−1 even

φ(m,l) . (50)

This means that in a minimal model we will not run out of the Kac-table, i.e. the fusion of two
Kac-table representations always gives fields of the Kac-table again. For augmented c(p,q) models,
this statement holds for the extended Kac table for LCFTs c(3p,3q).

1.6. Boundary condition changing operators

In general, we do not have to deal with infinite systems without (or rather with free) boundary
conditions which are rather easy to handle. Thus we have to think about how to enforce them and
which boundary conditions may be allowed in a given CFT.Rφ(z)

φ̄(z∗)

•

•

iR
−iR

Figure 3: The bulk scaling field
approaching the real
axis interacts with the
boundary.

The established concept is the introduction of so called bound-
ary condition (changing) operators φB(z) which arise in the
OPE of a bulk field with its mirror image when approaching
the real axis (see figure 3). Thus it may be replaced by the
OPE

φ(z)φ̄(z∗) ∼
∑

i

(z − z∗)(hi−2h)φ
(i)
B (x) (51)

with x = Re(z). They live solely on the boundary since they
only depend on the real part of the variable z. Being inserted at
some point at the boundary, those operators change the condi-
tions from one to another by changing the analyticity condition

at the part of the boundary at which they are inserted. For example, in the Ising model, the φ(1,2)

operator as a weight h = 1/16-field generates a branch cut in the OPEs in which it is involved.
Thus if we cross from one to the other half of the Riemann sphere, we pick up a phase and the
analyticity condition changes from φ(z) = φ̄(z∗) to something else. This approach to boundary
conditions is sufficient since any two-dimensional region with a piecewise differentiable boundary
can be mapped onto the upper half plane and it can be shown that the Kac-table fields are in
one-to-one correspondence with the possible different boundary condition changing operators. In
the Ising model, the change of boundary condition a to b is described by the insertion of a boundary
condition changing operator φ(a|b) with weight

(+|+) or (−|−) → h = 0 , (52)

(f |f) → h = 0, 1/2 , (53)

(+|−) → h = 1/2 , (54)

(−|f) or (+|f) → h = 1/16 , (55)
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where +,− stand for spin up or down, respectively and f for free boundary conditions. As the
Kac-table of c(4,3) = 1/2 consists of exactly these three fields, the one-to-one correspondence is
obvious.

σ = 0

σ = L

σ

t

x4

x1 x3

x2

βf

α f

Figure 4: Fixed boundary conditions for one of the two complex directions of
w = t+ iσ at σ = 0, L given by α, β mapped onto the upper half plane.

Assuming that any system is invariant under transformations that do not change the boundary
conditions, we may construct a strip as in figure 4 and map it back onto the upper half plane or
rather the upper half Riemann sphere. The Hamiltonian of the systems depends of course on the
boundary conditions. Inserting boundary operators at some point on the real axis means that the
vacuum is no longer translational invariant (L−1|0〉 6= 0) but a new vacuum |0〉B = φB|0〉SL(2,C).
Additionally it is known that the partition function of a bounded system can be obtained through
the free partition function times the correlation function of all boundary operators that have to be
inserted to model the conditions:

ZB = Zf 〈φB1(x1) . . . φBn
(xn)〉 . (56)

A motivation for this interpretation can be found in [14].

1.7. Modular invariance and the partition function

For some purposes it may be interesting to examine CFTs not on a deformed cylinder (punctured
complex plane) which is merely the simplest possible choice but on general Riemann surfaces. This
approach is for example needed in string theory in order to get interacting strings. Ordering by
the genus (g) of the Riemann surface (RS), we have a RS(g) with n tubes attached, one for each
interacting string, for non n interacting strings punctures are sufficient to describe their properties
by inserting a suitable vertex operator.

For a large class of CFTs it can be shown that the crossing symmetry of correlators on the complex
plane and modular invariance of the partition function on the torus is sufficient to require that the
CFT is consistent on any Riemann surface. Thus modular invariance is widely believed to be a
fundamental requirement for CFT. In fact, it has been proven by Cardy [5] and Nahm [68] that
from conformal invariance of a field theory on the two-dimensional sphere, S2, follows the modular
invariance of the partition function on a torus. Flohr [19] conjectured that this statement may be
extended to logarithmic conformal field theories as well.
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Figure 5: Building a torus.

Modular invariance on the torus means that if we consider a torus constructed by identifying the
opposite sides of a parallelogramm on the complex plane with edges at 0, 1, τ, τ + 1, there should
be a symmetry under

T : τ 7→ τ + 1 (57)

S : τ 7→ −1

τ
. (58)

T and S span the modular group PSL(2,Z) = SL(2,Z)/Z2 which is the set of all matrices M ,

M :=

(

a b
c d

)

, (59)

with unit determinant. Its action is given by M(τ) = aτ+b
cτ+d , identifying M ≡ −M . Thus modular

invariance means invariance under global conformal transformations.

The modular invariant partition function is given by

Z(τ, τ ) = (qq)c/24 tr
(

qL0qL0
)

, (60)

with q = exp(2πiτ). It can be rewritten in terms of bilinear combinations of the characters (see
also (31))

χ(h,c)(τ) = qh−c/24
∏

n≥1

(1 − qn)−1 = qh−c/24
∑

N≥0

P (N)qN , (61)

with P (N) counting the number of states at level N in the Verma module, excluding null states
and their descendants. More precisely, we have Z =

∑

h̄,h χ̄(h̄,c)Mh̄,hχ(h,c).

The factor −c/24 in (61) emerges from the difference between the stress energy tensor on the
complex plane and that on the cylinder

Tcyl = z2T (z)− c

24
1 (Ln)cyl = Ln − c

24
δn, 0 . (62)

1.8. Logarithmic CFT

1.8.1. Jordan cell structure

The “logarithmic”property of LCFTs emerges due to the existence of indecomposable highest
weight representations. Assuming that r such states of the same highest weight generate a non
trivial Jordan cell of rank r and n ∈ {0, . . . , r − 1}, we have (normalizing the off diagonal entries
of the Jordan cell to 1)

L0|h;n〉 = h|h;n〉 + (1 − δn,0)|h;n− 1〉 (63)

Lm|h;n〉 = 0 for m > 0 . (64)
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Obviously there is an irreducible subrepresentation for n = 0 which belongs to the original primary
field whereas all others are called logarithmic partners. Due to the new structure, the Virasoro
modes act no longer as linear differential operators as defined in (28) but

L−kψ(h;n)(w) =
(1 − k)h

(z − w)k
ψ(h;n)(w) − 1

(z − w)k−1

∂

∂w
ψ(h;n)(w) − (1 − δn,0)

(1 − k)

(z − w)k
ψ(h;n−1)(w) .

(65)

Most basic terms of CFTs can be generalized to LCFT, e.g. the null vectors

|χ̃(n)
(h,c)〉 =

∑

k

∑

{n}
b
{n}
k L−{n}|h; k〉 , (66)

with k denoting their place within the Jordan cell. Thus the original null states may no longer
be orthogonal any other state in an LCFT extended model. Therefore we have to include the
logarithmic partner states into our considerations to get true LCFT null states. Examples for such
states are given in [23].

1.8.2. Logarithms in LCFT

There are essentially two ways to write down a partition function for an LCFT which we will sketch
in the following [25]. As already mentioned, in standard CFT the partition function is given by

Z =
∑

h,h̄

χ̄(h̄,c)(τ)Mh̄,hχ(h,c)(τ) , (67)

with

χ(h,c)(τ) = trMh,c
qL0−c/24 , q ≡ exp(2πiτ) . (68)

Additionally, we know that the vector space spanned by the characters χ(c,h)(τ) is isomorphic to
that of the torus amplitudes ψ(c,h)(τ).

However, in LCFT the situation is slightly different. We have two possibilities to choose a partition
function, i.e. Zred and Zfull. While the reduced partition function is a modular invariant that can
be expressed solely by traces over modules,

Zred =
∑

{h,h̄}∈Ired

χ̄red
(h̄,c)(τ)Mh̄,hχ

red
(h,c)(τ) (69)

with

χred
(h,c)(τ) =

{

trMh,c
qL0−c/24 if |h〉 generates an irrep 6⊆ indecomposable representation

trRh,c
qL0−c/24 if |h〉 is part of an indecomposable representation

(70)

In the latter case, the trace runs over the maximal indecomposable representation R(c,h) containing
|h〉 only. Therefore we observe that the vector space spanned by the reduced characters is strictly
contained in that of the torus amplitudes obtained from the modular differential equation or, more
precisely, is even smaller than it.

Note that for a logarithmic setup, here for a rank two Jordan cell structure, L0 can be represented
by a matrix,

L0 =

(

L(0,0) 1
0 L(0,1)

)

⇒ qL0 =

(

qL(0,0) log(q)qL(0,0)

0 qL(0,1)

)

. (71)

23



The exact form of qL0 depends on the choice of the basis since in an LCFT the Jordan cell structure
is non-trivial and the states are no longer orthogonal to each other. However, a suitable linear
combination remedies the problem.

The second possibility is to take the full partition function defined by

Zfull =
∑

{h,h̄}∈Ifull

ψ̄(h̄,c)(τ)Mh̄,hψ(h,c)(τ) , (72)

where the ψ are the torus amplitudes, i.e. the solutions of the modular differential equation, in a
suitable linear combination such that we can rewrite (72) in the rank two case as

Zfull =
∑

irreps

(ψ̄(h̄,c)(τ)M
irred
h̄,h χ(h,c)(τ) + h.c.)

= Zred + α log(qq̄)
∑

indec

ψ̄(h̄,c(τ)M
red
h̄,hψ(h,c)(τ) (73)

In the case of LCFTs, not all of the torus amplitudes ψ(h,c) can be interpreted as traces over
modules. Hence, to obtain the full partition function in an LCFT, the isomorphism between the
vector space of the characters and that of the torus amplitudes ceases to exist and logarithms arise
in the CFT. The additional coefficient α represents the freedom of choice that we have for this
term since we have no restrictions from modular invariance alone to fix it in magnitude while for
all torus amplitudes that correspond to characters we get an additional constraint. This emerges
from the fact that the character χ(c,h), as a trace over the module, is counting the states contained
therein. Thus by imposing that the lowest term in its expansion should represent the multiplicity
of the ground states of the module, the overall factor α can naturally be fixed.

In the two-point functions of fields of the same weight we have for a rank two theory:

〈ψ(h;0)(z)ψ(h′;0)(w)〉 = 0 , (74)

〈ψ(h;0)(z)ψ(h′;1)(w)〉 = δh,h′

A

(z − w)2h
, (75)

〈ψ(h;1)(z)ψ(h′;1)(w)〉 = δh,h′

B − 2A log(z − w)

(z − w)2h
, (76)

which means that the property that the vacuum is normalized to zero is a very important feature
especially in LCFTs with vanishing central charge.

The logarithmic fields transform under conformal transformations f(z) as follows

ψ(h;n)(z) =

(

∂f(z)

∂z

)h

(1 + log(∂f(z))δn,0)ψ(h;n)(f(z)) . (77)

Thus n = 0 reproduces the ordinary primary field while for n 6= 0 the fields can not have this
property. From these two properties follows that the solutions for differential equations for n-point
functions arising from null vector conditions may contain logarithmic divergences as well.

The global conformal Ward identities are affected by the modified action of the Virasoro modes
and thus the form of the one-, two- and three-point function is changed, too. They can be found
in [22], [21], [19] and [20].
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1.8.3. An example: the representation structure of c = −2c = −2c = −2

The detailed structure of Jordan cells in augmented minimal models with central charge c = c(p,q)

is only known in sufficient detail for q = 1 so far. We will try to illustrate their behavior with the
help of the canonical example, c(2,1) = 0. Its Kac-table is given by

c(2,1) :
0 − 1

8 0 3
8 1

1 3
8 0 − 1

8 0
. (78)

It consists of the pre-logarithmic field µh=− 1
8

residing at (0, 0) ≡ (q, p) ≡ (2q, 2p) which gives
rise to an irreducible representation. It has a corresponding irreducible representation residing at
(q, 2p) ≡ (2q, p) which differs from µ in its weight by (p · q)/4. The three remaining fields residing
at (1, 1) ≡ (2, 5), (1, 3) ≡ (2, 3) and (1, 6) ≡ (2, 1) have a more sublte connection. φ(1,1) generates
an irreducible subrepresentation V0 of the indecomposable representation R0 based on φ(1,3). The
level of the null vector on both is given by the product r · s of their coordinates in the Kac-table.
The former indicates the difference in its weight of the third (irreducible) representation V1 -
r ·s = 1 ·1 = 1 and thus h(1,5) = h(1,1) +1 = 1. It is a subrepresentation of another indecomposable
triplet representation denoted by R1 which is generated by a W-algebra described below. This new
indecomposable representation R1 is not a generalized highest weight representation (HWR) since
the action of L1 on its generating vector does not vanish. Due to this feature, it does not appear in
the Kac-table which only states the HWRs. Schematically, this is denoted by (V0,R0,V1) wherein
R1

∼= R0 in the sense that they contain the same number of states.

The pre-logarithmic field is important to compute these relations since in the fusion product with
itself the indecomposable representations arise, i.e.

[

−1

8

]

×
[

−1

8

]

= [Ω] + [ω] . (79)

with Ω and ω standing for the generating fields of V0 and R0, respectively.

Additionally, the c = −2 model exhibits another symmetry based on the so called W-algebra
[18] which is a triplet algebra and precisely referred to as W(2, 33). Up to the fields of weight
three, the fields generated by the modes of this algebra do not contribute additional fields to those
generated by the Ln. For higher weight states, this is no longer the case. Thus we have additional
commutation relations

[Lm,W
a
n ] = (2m− n)W a

m+n , (80)

[W a
m,W

b
n] = gab

(

(2m− n)Λm+n +
m− n

20
(2m2 + 2n2 − nm− 8)Ln+m

−m(m2 − 1)(m2 − 4)

120
δn+m

)

+fab
c

(

5

14
(2m2 + 2n2 − 3mn− 4)W c

m+n +
12

5
V c

m+n

)

, (81)

with a, b ∈ ±, 0, Λ(z) = :TT :(z) − 3
10∂

2T (z) and V a(z) = :TW a:(z) − 3
14∂

2W a(z).

The closure of the algebra (i.e. the Jacobi-identity) is only realized if the null vector conditions are
imposed on the universal enveloping of the W-algebra. The analysis of the result leaves us with four
primary fields, − 1

8 ,
3
8 , 0 and 1 of which the latter two correspond to the irreducible representations

V0 and V1 whereas the other two irreducible representations do not have special names. More
details on this structure can be found in [18].
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Figure 6: The structure of the representations of c = −2. The relations between the generators of
the representations are visualized by arrows. The generating states are assigned to their
corresponding representation by dotted lines. Every representation is denoted by a point
in the sketch.

In figure 6 we therefore have the Jordan block structure

L0ω = Ω , L0Ω = 0 ,
W a

0 ω = 0 , W a
0 Ω = 0 .

(82)

The label Xj
−1 collectively denotes the four states generated by L−1ω and Wα

−1ω forming two
su(2)-doublets.

φα ≡ φ±h=1 is the generator of the indecomposable representation R1 which contains two ground
states, i.e. ξα ≡ ξ±h=0 and ψα ≡ ψ±

h=1, residing in a Jordan cell generated by L0. The connections
between the fields are given by

L1φ
α = −ξα , W a

1 φ
α = taα

β ξβ ,

L0φ
α = φα + ξα , W a

0 φ
α = 2taα

β φβ ,

L0ξ
α = 0 , W a

0 ξ
α = 0 ,

L−1ξ
α = ψα , W a

−1ξ
α = taα

β φβ ,

L0ψ
α = ψα , W a

0 ξ
α = 2taα

β φβ .

(83)

The remaining two irreducible representations, V−1/8 and V3/8, are generated by an su(2) singlet
µ and an su(2) doublet να, respectively.
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2. Percolation

2.1. A phenomenological introduction

2.1.1. What is percolation?

Figure 7: A possible porous stone. 1

In 1957, Broadbent and Hammersley were the first
to formulate the percolation problem asking the
question of how probable it is for the center of
a porous stone to be wet when laid into a jar of
water. The term “percolation” thus refers to the
process of random walks through a material de-
pending on the likelihood of ways to be opened or
closed. Obviously the probability depends on the
size, the shape and the number of open pores.

It is usually modeled based on a lattice, e.g. a sub-
set of Z2 (the plane square lattice) or the triangu-
lar lattice, whose bonds or sites are opened (or
closed) with a probability p (or (1− p)), p ∈ [0, 1].
In the following we will concentrate on bond per-

colation on the square lattice for easier handling of the problem since the square lattice is dual to
itself, making things much easier to calculate (see figure 8). Here the open edges represent open
inner passageways of our porous material. Of course, (due to its finite size) a stone may only be
represented by a large but finite subset of Z2, but in physics it is often easier to deal with infinitely
large systems or with less dimensions. Thus, in our model, a vertex of the stone will be wet iff there
exists a path in Z2 to some vertex at the boundary running through open bonds. This random
subgraph obviously depends on the probability of the bonds to be opened or closed and on the
aspect ratio of our two dimensional rectangular stone.

Modeling the system numerically, we find that there exists a critical probability for the bonds
or sites to be opened. For an infinite lattice, at this point the probability to cross from one
side to another jumps from zero to one. For critical bond percolation on the square lattice, this
phase transition occurs at pc = 1/2. At this point the situation changes from having an infinitely
large cluster of connected sites (i.e. closed bonds) to non-connected sites (i.e. open bonds). For
critical site percolation on the triangular lattices, we encounter the same situation at pc = 1/2.
Although bond percolation on the square lattice may be the easiest to compute, site percolation
contains a larger number of possible models. Due to its special symmetry, the form of the crossing
probabilities can, up to now, only be proven mathematically for the triangular lattice. In general,
any bond percolation model has a corresponding model in site percolation but this statement does
not hold the other way around.

2.1.2. Phase transitions in physics

Critical behavior is well known from everyday life. In nature, phase transitions do not only occur
in the strict sense of thermodynamics between the solid, the fluid and the gaseous phase but for
example also in the change from a fluid into a gel. A very simple example would be an egg in boiling
water – after five minutes it is solid. What has happened? The molecules, formerly arranged in
very small formations group into larger clumps. Another example may be known to the consumers
of Pernod. Adding a small amount of water to the beverage does not make any difference, it stays
clear. But exceeding the critical portion, the water causes the drink to become opaque.

0source: http://www.terratec.se/minwebbplats/images/sten5.jpg
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Figure 8: Examples of two dimensional lattices: (a) the self dual square lattice pc = 1/2, (b) the
honeycomb lattice (dashed) and its dual, the triangual lattice (solid) pc = sin(π/18),
(c) the hexagonal lattice (dashed) and its covering, the kagome lattice (solid) pc =
1− sin(π/18) (d) the bow-tie lattice with pc = roots of (1− p− 6p2 +6p3 − p5 = 0) [37].
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Figure 9: Bond percolation on the square lattice for four different probabilities p =
0.25, 0.49, 0.51, 0.75. In this setup, the critical probability is pc = 0.5 [37].
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2.1.3. Percolation vs. other disorder models

There are several reasons why we chose percolation as case study and not any other disorder
model. First of all it is very easy to formulate as we will see in the following sections. The partition
function is especially simple, but not too simple containing a minimal statistical dependence on the
probability p of bonds to be open or closed in the bond or site percolation case. Secondly, we have
very realistic and qualitatively as well as quantitatively fitting results from percolation models.
As an example, there have been numerical simulations on bond percolation on a large rectangular
lattice, proving Cardy’s formula for the probability of a horizontal crossing from one to the opposite
side to be right within an amazing accuracy. Thirdly, percolation is suitable as a playground for
more complicated applications such as other disorder models. Last but not least, there are many
conjectures concerning percolation, such as Watts’ differential equation for the horizontal vertical
crossing probability on the rectangular lattice, that remain to be proven and thus provide a huge
area of research currently going on. Additionally, percolation can be formulated in many research
fields within mathematics and physics, e.g. from a statistical point of view as well as in conformal
field theory or in terms of Schramm Loewner Evolution (SLE).

Percolation fits into the greater class of disorder models as a well studied example very much like
the harmonic oscillator into quantum mechanics. Complicated problems are often simply being
tried to be mapped onto one of the many percolation cases on the different possible lattices with
the choice of bond or site percolation. There has been research towards a classification of disorder
models categorized by Zd with d ≥ 2 by comparing their behavior to each other and, as said before,
often to known percolation models. In various cases, they are known to exhibit the same critical
exponents or duality behavior.

Thus, percolation is an important cornerstone for the theory of disordered models and thus a very
interesting case to study in c = 0 conformal field theories to which those disorder models are widely
believed to belong to.

2.2. Applications of percolation

2.2.1. Dynamical percolation

Figure 10: Example of a dynamical percola-
tion process. A forest fire spreads
on a square lattice, leaving burnt
and intact trees behind. 1

Percolation is not only interesting as the Q → 1
limit of the Q states Potts model or as an applica-
tion of SLE(κ, ρ) but has also proven to be useful
in practice as a model for conductivity of random
resistance networks, spreading of diseases and for-
est fires. Usually, dynamical percolation is needed
in most of these cases as introduced by Janssen
[46]. The dynamics are often realized as follows:
starting with an active site of the lattice, other
nearest neighbors in the next step can be activated
with a probability p, becoming “infecting” vertices
in the next time step and so on. Thus, activation
will be spread randomly over the lattice, while any
site may die out after some time or has to compete
for resources with neighboring sites. After a long
time, the overall behavior of the system will de-
pend on the activation rate very much like in the
non-dynamical case. Forest fire spreading models
are similar to that of epidemics or diseases caused
by bacteria or viruses.

1source: http://www.ucls.uchicago.edu/people/02/Beckett_Sterner/percolation.gif
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2.2.2. Static percolation

Figure 11: Example of an insulator - conduc-
tor composite two dimensional net-
work [37].

An example for static percolation would be dis-
ordered electrical networks. In many applications,
materials of different effective resistances are mixed,
resulting in a composition of unknown resistance.
It depends, of course, on the relative proportions
of the involved materials, especially in the case of
one being a perfect insulator. Regarding an (n×n)
subset of Z2, connecting the sites with electrical
wires of, e.g. 1 Ohm resistance, it would be inter-
esting to know how probable it is for the whole
network to be conductive? However, since stone
is merely a three-dimensional problem for which
CFTs are less restrictive and thus predictive, we
will deal with two dimensional problems in the fol-
lowing.

One of the most famous examples for site perco-
lation however, is (anti-)ferromagnetism or, as it
is usually called, the Ising model. In a magnetic
field, the spins inside (anti-)ferromagnetic materi-
als tend to align with the external field. Increasing
the external field up to a given value and decreasing it again, leaves the (anti-)ferromagnet in two
different types of organization, depending on its temperature. Below the critical (Curie) temper-
ature Tc, in the so called ordered phase, a certain amount of aligned spins will remain whereas
above it, no net magnetization can be observed. This phenomenon is called “spontaneous magne-
tization”. The percolation case can be obtained from the Ising model if the neighbors are assumed
not to interact. Both belong to a greater set of “generalized percolation models” or random cluster
models. More about this link can be found in reference [37].

Another application is the error probability in wafer production. The microchips are usually
manufactured on a square grid, of which some are inevitably faulty. For certain applications it
would be more useful to take the wafer as a whole without having to check whether the individual
chip is intact or not. Thus, in this case, the question is whether there are enough chips for the
wafer to work or not.

2.3. Bond percolation and conformal field theory

Since most percolation models are rather similar, this thesis will only deal in detail with the
special case of bond percolation on a rectangular lattice of aspect ratio r. Thus we have a subset
of Z2 with bonds connecting nearest neighboring sites with a probability p. Now let Πh(r) be the
probability of having a cluster of open bonds spanning from left to right and thus establishing a
horizontal crossing through the lattice. In the thermodynamical limit, meaning that the lattice
sizes approaches infinity, there exists a critical probability pc such that Πh(r) = 0 for p < pc and
Πh(r) = 1 for p > pc. For pc = 1/2 one may find that Πh(1) = 1/2.

2.3.1. Percolation as a limit of the Q state Potts model

Bond percolation may also be obtained by taking the Q→ 1 limit of the Q states Potts model. On
each site of Z2 we have a spin σi attached with σi ∈ Q = {σ1, . . . , σQ}. We denote the interaction
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energy between two nearest neighbor sites i and j having the same spin by J . Thus from statistical
mechanics we know that the partition function is given by

Z =
∑

{σ}

∏

〈ij〉

(

1 + exp(−βJ)δσi,σj

)

=
∑

R

pB(R)(1 − p)B−B(R)QNC(R) (84)

with B being the total number of bonds on the lattice of which B(R) are activated, NC the number
of disjoint clusters in R which is a random set of activated bonds. The last factor stands for the
number of possibilities of distributing Q colors on NC(R) clusters and the first part represents the
probability of the existence of such a configuration. Obviously,Q→ 1 corresponds to percolation.

In case of percolation, the horizontal crossing probability is given by the partition function of only
crossings of one color. It can be obtained by the partition function of clusters that include the case
of only one color minus the clusters connecting the sides of the lattice of different colors, i.e.

πh(r) ∝ lim
Q→1

(Zαα −Zαβ) . (85)

x3

x0 x2

x1

βf

α f

Figure 12: Bounded region with free
and two different fixed
boundary conditions.

The horizontal crossing probability Πh(r) may be derived
in statistical physics as well as in the context of confor-
mal field theory. Taking what we learned from boundary
CFT into account, we know that the partition functions
of systems with boundary conditions may be expressed by
the correlator of the boundary operators inserted at the
points at which the conditions change. Mapping the re-
gion onto the upper Riemann sphere (including the point
at infinity), we can visualize the problem by imagining
it on a disc with four boundary conditions as in figure
12.

Now the partition functions of our two cases are given
by

Zαα = Zf 〈φ(f |α)(x0)φ(α|f)(x1)φ(f |α)(x2)φ(α|f)(x3)〉
Zαβ = Zf 〈φ(f |α)(x0)φ(α|f)(x1)φ(f |β)(x2)φ(β|f)(x3)〉 ,

with Zf being the partition function for free boundary
conditions.

Since we do not yet know which boundary operator we have to insert, we take a look at the Q-state
Potts model which is nothing else than the minmal model M(m,m − 1) with Q = 4 cos2(π/m)
(m = 3, 4, 6,∞). It turns out that for the horizontal-vertical crossing we have to take φ(α|β) = φ(1,3)

and for the horizontal crossing the correct choice is φ(α|f) = φ(1,2). Thus we can make use of the null
vector condition for φ(1,2) and the assumption of scale invariance, c = 0, and solve the differential
equation,

η(1 − η)g′′ +
2

3
(1 − 2η)g′ = 0 , (86)

with η being the anharmonic ratio. The horizontal crossing probability Πh is now a suitable
combination of the two independent solutions, η1/3F (1/3, 2/3, 4/3; η) and 1. After considering the
correct asymptotic behavior, one finds that

Πh(r) =
3Γ(3/2)

Γ(1/3)2
η(1/3)F (1/3, 2/3, 4/3; η) , (87)
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is the correct solution. Various numerical simulations [56] have proven that this so-called Cardy’s
Formula is the solution to the critical site percolation problem on the triangular lattice in two
dimensions. Since this percolation model exhibits very similar behavior to critical bond percolation
on the rectangular lattice, it is widely believed that the result should hold for that case, too.

z1 z2 z3 z4

• • • • R
iR

w1 w2

w3w4

• •

••

L′

L

iR
R

Figure 13: Schwarz Christoffel mapping between the Riemann sphere and the interior of a rec-
tangle of aspect ration r = L/L′. The equation for the mapping is given by

w = A
∫ z

0 dt [(t− z1)(t− z2)(t− z3)(t− z4)]
−1/2

An especially easy case to compute the exact result occurs when considering a rectangular region
on a square grid. By a Schwarz Christoffel mapping we can map the problem of percolation of
statistical physics to the correlation of four boundary changing operators in CFT as introduced
in the previous chapter. We make the special choice of (z1, z2, z3, z4) = (−1/k,−1, 1, 1/k) and
therefore we can compute the aspect ratio r easily by considering the width and the length of our
rectangle

L = 2

∫ 1

0

dt
√

(1 − t2)(1 − k2t2)
, (88)

L′ =

∫ 1/k

1

dt
√

−(1 − t2)(1 − k2t2)
, (89)

with the aspect ratio being defined by r := L/L′. Obviously, these integrals can easily be solved
for k. In this parameterization of the zi the anharmonic ratio is particularly easy, too and is given
by

η =

(

1 − k

1 + k

)2

. (90)

Taking Cardy’s formula [8], and inserting our previous results, the correctly normalized crossing
probability is completely determined

Πh(r) =
Γ(2/3)

Γ(4/3)Γ(1/3)
η
1/3
2 F1(1/3, 2/3, 4/3; η) . (91)

The dependence on the aspect ratio of the two sides of the rectangle is indirectly present in the
solution through the cross ratio η.

Another more elegant solution to the problem has been proposed by Kleban [50], Ziff [82, 83] and
Zagier [51] which uses modular forms to describe the crossing probability. Their result is stated in
terms of the Dedekind function η = q1/24

∏

n(1 − qn):

Πh(r) =
27/3π2

√
3Γ(1/3)2

∫ ∞

r

η4(ir′) dr′ . (92)
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2.3.2. Percolation and Statistic / Schramm Loewner evolution

∞ x1 a0 x2

Figure 14: Sketch of SLE. The region between
the path and the real axis is an ex-
cluded part of the upper half plane.
Thus if x2 gets swallowed before x1,
there can be no crossing between
(x2,−∞) and (a0, x1).

There is another way to approach percolation than
starting with a lattice and a bond or site configu-
ration. Stochastic or Schramm Loewner evolution
(SLE) has been proven to be statistically equiva-
lent to critical site percolation on the triangular
lattice by Smirnov [76] for the horizontal cross-
ing and by Dubedat [16] for the horizontal-vertical
crossing. It describes a random walk which leaves
i.e. open sites to the right and closed sites to the
left, automatically being reflected from itself and
the boundary. Usually, SLE is considered on the
upper half plane starting at the origin, character-
ized by a speed κ. Recently, a new type of SLE
came up in the literature, characterized addition-
ally by a second parameter ρ which includes mul-
tiple random curves.

As illustrated in figure 14, a random walk of speed
κ starts at a point a0 on the real axis, randomly

running over the upper half complex plane. With x1 < a0 < x2, it is obvious that if x1 is
“swallowed” first by the graph, there exists a free path along its outer line, and thus a crossing
between the intervals (a0, x2) and (−∞, x1). If x2 gets swallowed first, this is not the case. From
SLE(κ) follows now that the differential equation for this Bessel process is given by

(

2

x1 − a0

∂

∂x1
+

2

x2 − a0

∂

∂x2
+
κ

2

∂2

∂a2
0

)

P (x1, x2; a0) = 0 . (93)

which for κ = 6 has the same solution as the Cardy’s famous formula obtained from a level two null
vector [7]. Translational invariance enforces ∂a0 = −∂x1 − ∂x2 and conformal invariance ensures
that P is a function of the ratio η = x2−a0

x1−a0
.

Another possibility than to write down the equation for the path evolving in time is to look at
the conformal mapping z → g(z; t) which maps the region of the upper half plane which has been
excluded by the path onto the whole upper half plane again. The dynamics of the model have now
been shifted from the path to the dynamics of such mappings. Now, it has been shown that in the
continuum limit, SLE corresponds to percolation via the Loewner equation [73]

∂g(z; t)

∂t
=

2

g(z; t) − a(t)
. (94)

The function a(t) is fixed by scaling and locality properties to be a Brownian motion, i.e. ∂ta(t) =
ξ(t), ξ(t)ξ(t′) = κδ(t − t′) [74]. The path exhibits different behaviors, depending on κ. For
0 ≤ κ ≤ 4, it is simple, for 4 < κ < 8 it touches itself and for κ > 8 it is space filling; in the first
two cases, its fractal dimension is given by 1 + κ/8.

For κ = 6 (as stated above), the differential equation can be led back to Cardy’s differential
equation for percolation based on a c(3,2) = 0 rational CFT. More precisely, the probability of
having a crossing of opened sites from (−∞, x1) to (0, x2) is the same as the probability of x1

getting swallowed by the path before x2 (see figure 14 for variable assignment).

More on ordinary SLE can be found for example in [72]. Unfortunately it would clearly go beyond
the scope of this thesis to introduce the various generalizations of SLE, i.e. SLE(κ, ρ) [57],[11],[16]
or [3] or multiple SLE(κ) [2] and SLE(κ, b) [60].
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3. Watts differential equation and SLE

One of the most important papers for two dimensional percolation in conformal field theory during
the last years is that of G. M. T. Watts [78] who motivated a differential equation containing
the solutions for the horizontal vertical crossing probability Πhv in two dimensional critical bond
percolation. Originally he started with an equation of fifth order based on c = 0, which later on
has been factorized revealing a level three differential equation. This one turned out to contain
the three correct solutions corresponding. In our first paper [28], we presented the first proposal
how to interpret the differential equation within a null vector condition action on a four-point
correlation function. This section of the thesis will motivate how the ideas of our interpretation of
percolation as a rational c = −24 CFT evolved.

3.1. A brief review of percolation properties

As already motivated in the second section of this thesis, critical percolation in two dimensions can
be described by a conformal field theory. Besides its critical exponents, its partition function should
be fixed by the boundary operators which are members of the Kac-table if we assume percolation
to be described by a minimal model. From this follows immediately that the three independent
crossing probabilities 1,Πh,Πhv are conformally invariant and, as discussed in the chapter about
percolation, should be the solutions of a differential equation arising from a correlator of boundary
operators or their descendants [56]. For Πh, Cardy [7] has already been able to derive an exact
solution with the help of boundary conformal field theory which matches the numerical data to a
high accuracy.

Five years later, Watts [78] came up with the idea of how to construct boundary operators for Πhv

in the context of the Q→ 1 limit of the Q-state Potts model. Starting with this model he tried to
derive a differential equation within a c = 0 theory that agrees with the simulations. As a matter
of fact he managed to derive one of fifth order which could be simplified, including the correct third
order equation. Additionally to the review on percolation in the second chapter, further details
can be looked up in e.g. Kesten [48] or Stauffer and Aharony [77].

3.2. Famous assumptions about percolation

In the previous literature, several arguments have been given to describe the crossing probabilities
in two dimensional critical percolation as conformal blocks of a four-point correlation function of
(h = 0)-operators in a c = 0 conformal field theory, using a second (third) level null vector to get
Πh (Πhv). The most prominent are

(1.) (for c = 0) the Beraha numbers Q = 4 cos2
(

π
n

)

(with n usually denoted as m+ 1 = 2, 3, 4 . . .
which in most Potts models are related to the central charge by c = 1 − 6

m(m+1) [7]);

(2.) (for c = 0) Πh can be derived mathematically by the Stochastic/Schramm Loewner Evolution
(SLE) which strengthens the first argument;

(3.) (for h = 0) the proportionality of the partition functions for free boundary conditions to
Z = 1 of percolation (as suggested by Cardy [7]);

(4.) (for c = h = 0) the interpretation of the central charge as describing the finite size effects of
the energy which are believed to be absent.
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3.2.1. c = 0c = 0c = 0 from the Beraha numbers

To understand the first point, we give a brief review on the Q-state Potts model (literature for the
connection to percolation can be found in [42, 43, 45, 44, 70]). On a simply connected compact
region with a piecewise differentiable boundary the horizontal crossing probability Πh is defined
through the partition function. It has originally been derived by Fortuin and Kasteleyn [29, 30]
but can also be looked up in e.g. the literature given above or [7, 50, 81].

Z =
∏

(r,r′)

(

1 + xδs(r),s(r′)

)

=
∑

G

QNcxNb , (95)

where x = p
1−p for Q → 1 and the rightmost sum running over all possible graphs of Nb bonds in

Nc clusters. By expanding it in powers of x we can extend the Q-state Potts model to Q ∈ R.

Πh describes the probability of having a connection from, e.g., one piece X = (x0, x1) of the
boundary to another disjoint part Y = (x2, x3) where the spins are fixed to values α and β,
respectively, while on the rest we have free boundary conditions (for a more detailed introduction
see [8]). Hereby any region which can be mapped onto the real axis by a conformal transformation
is equivalent (for corners we may get singular behavior but no discontinuities at the corresponding
points). For α 6= β, it is given by [50]

Πh(X,Y ) = lim
Q→1

(

1 − Zαβ

Zαα

)

. (96)

In terms of boundary changing operators [4, 6] from free (f) to fixed (α, β) conditions, we get

Zα,β = Zf 〈φ(f |α)(x0)φ(α|f)(x1)φ(f |β)(x2)φ(β|f)(x3)〉 . (97)

In the infinite volume limit, these quantities diverge for Q 6= 1, but by taking a closer look at the
partition function of the Potts Model for Q→ 1, we find for a minimal model with central charge
c = 0 the partition function to be Z = 1 in this limit.

For Πh, the φ(a|b) are h(1,2) boundary operators, while the results for Πhv contain other boundary
operators that can be identified by comparison with known Potts models (i.e. for Q = 2, 3) to
have weight h(1,3). Another motivation for this ansatz can be found by letting the length of the
segment with free boundary conditions tend to zero. Therefore we know from fusion rules that

φ(α|f) × φ(f |β) ∼ δαβ + φ(α|β) , (98)

which means that the fusion of two φ(1,2) boundary operators yields a φ(1,3) field [7, 50]. Hence
we will look out for a rational CFT with a Kac-table which is large enough to contain level three
fields (i.e. φ(1,3) or φ(3,1)).

So far, it seems very reasonable to choose c = 0 to describe percolation, but, unfortunately, a
minimal model c(3,2) = 0 is not very interesting, since its field content only consists of two h = 0
fields – φ(1,1) and φ(1,2). Thus the Q→ 1 limit of the Q-state Potts Model (which corresponds to
c(3,2) = 0 since both partition functions equal one) does not accommodate Cardy’s proposal that
boundary operators for the horizontal vertical crossing probability should appear at level r · s = 3
in the Kac-table. Thus we might not wish to follow his original approach to the horizontal crossing
probability but to reconsider our underlying CFT.

c = 0c = 0c = 0 in an augmented minimal model Naively one could ask why we should not include the
φ(1,3) field into the spectrum. The answer is simple - since the partition function crucially depends
on the field content it will no longer be equal to one as suggested by the Q→ 1 limit of the Q-state
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Potts model procedure. Precisely speaking, including the fields on the boundary of the Kac-table,
e.g. h(1,3) = 1/3, leads to a so called logarithmic conformal field theory as described in [23, 32].

Taking a closer look on the representation of the boundary condition changing fields, we encounter
that it is indecomposable, containing an irreducible subrepresentation with the following character

χ(1,3)(q) =
1

η(q)

∑

n∈Z(2n+ 1)q3(4n+1)2/8 , (99)

where η(q) denotes the Dedekind η-function, η(q) = q1/24
∏

n≥1(1 − qn). As explained in the first
part of this thesis, a conformal field theory constructed that way, i.e. by taking the fields on the
boundary of the conformal grid and all those necessary to close under fusion, is called augmented
minimal model. It is no longer rational in the strict sense but still exhibits the important feature
that it contains only finitely many indecomposable and irreducible representations. Additionally,
logarithms arise, e.g. in the OPE or the partition function, and therefore it is referred to as an
LCFT [39]. It has an effective charge of ceff = c − 24hmin = 1, and thus the correct modular
invariant partition function for c(3,2)aug = c(9,6) is proportional to that of a generic c = 1 theory
(up to factors like log(qq̄)). Indeed, it is given by

Z =
1

|η(q)|2

(

|Θ0,6(q)|2 + 2

5
∑

λ=1

|Θλ,6(q)|2 + |Θ6,6(q)|2
)

, (100)

Θλ,k(q) =
∑

n∈Z q(2kn+λ)2/4k . (101)

with the radius of compactification given by 2R2 = 1/(2 · 3) = 1/6. Additionally it is proportional
to the partition function of model of the same effective charge, namely c(6,1) = −24 which will be
important later on.

In contrast to the behavior of the terms arising in ordinary minimal models, the logarithmic
corrections are not fixed in magnitude since these contributions can not be interpreted as formal
counting of states.

For better comparison, we state the full partition function given by

Zfull[α, β] = Z + α
log(qq̄)

|η(q)|2
5
∑

λ=1

|(∂Θ)λ,6(q)|2 + β log(qq̄)2|E2(q)|2 , (102)

(∂Θ)λ,k(q) =
∑

n∈Z(2kn+ λ)q(2kn+λ)2/4k , (103)

where E2(q) is the Eisenstein series of modular weight two.

This result can be obtained by solving the modular differential equation. Therefore it suffices to
know the vacuum (or any other) character and the conformal weights arising in the representations.
This method applied to LCFT can be found explained in detail in [19, 20].

Thus we have shown that in order to interpret the horizontal-vertical crossing probability in a
critical bond percolation on a square lattice system using boundary operators, i.e. φ(1,3), we have
to include the boundary of the conformal grid of the c(3,2) = 0 minimal model. This results in an
enlarged theory with partition function similar to (100), which therefore is definitely not equal to
one.

37



3.2.2. c = 0c = 0c = 0 from SLE

After having excluded the Q→ 1 limit of the Q state Potts model as a suitable argument for c = 0,
we have to take a look at the implications of SLE(κ) on percolation.

Now we will take a look at the second argument for c = 0 from Stochastic/Schramm Loewner
Evolution (SLE). SLE is based on the orignal work of Loewner [62] and has been applied to
Brownian motions e.g. by Lawler, Schramm, Werner and Rhode [60, 61, 72, 73]. These random
curves can provide us with another way to formulate the percolation problem (various introductions
can be found e.g. in [38, 58, 59, 79, 80]). Unfortunately, up to now it has not been possible
to establish a link between Dubedat’s [16] proof for Watts’ differential equation within an SLE
approach and a CFT bond percolation model. Thus we will concentrate on the results for the
solution of Cardy’s differential equation in the following. Although the issues discussed above
concerning the insufficient field content of the minimal model with c = 0 do not apply within the
SLE setting, we will show that SLE does not necessarily force us to take a CFT with vanishing
central charge c = 0.

In [12], Cardy gave an elaborate review of how SLE can be applied to calculate crossing probabil-
ities. As already explained in section 2.3.2, a path evolves by a Brownian motion of speed κ = 6
which repeatedly hits the real axis. In a configuration where the motion starts from a point a0 on
the real axis running all over the complex upper half plane with x1 < a0 < x2 being the end points
of the crossing intervals, one of the points will be “swallowed” first. For x1 being the first to be
hit by the graph, there obviously exists a free path along the outer line of the graph, for x2 it is
quite as obvious that this is not the case. Thus the probability that there is a crossing between
(a0, x2) to (−∞, x1) is given by a Bessel process, described by a differential equation

(

2

x1 − a0

∂

∂x1
+

2

x2 − a0

∂

∂x2
+
κ

2

∂2

∂a2
0

)

P (x1, x2; a0) . (104)

From translational invariance we get ∂a0 = −∂x1 − ∂x2 and from conformal invariance, we know
that P is a function of the ratio η = x2−a0

x1−a0
. This is exactly the same differential equation one

yields with CFT for percolation from a two level null vector [7]. There is also a general expression,
relating the speed of the Brownian motion κ to the central charge and thus the highest weight
states of the Virasoro algebra (i.e. [1], [12]). For 2 ≤ κ ≤ 8 this means that

cκ =
(3κ− 8)(6 − κ)

2κ
, (105)

hκ
(r,s) =

(rκ− 4s)2 − (κ− 4)2

16κ
. (106)

Hence, c = 0 and h(1,2) = 0 for κ = 6 which has been shown to describe Πh in two dimensional
critical site percolation on the triangular lattice [75]. Additionally, Bauer and Bernard [1] stated
a direct correspondence between the Q-state Potts model and SLE

Q = 4 cos2
(

4π

κ

)

, κ ≥ 4 , (107)

by matching the known value of the dimension of the boundary changing operator for the Q-state
Potts model with hκ

(1,2).

3.2.3. h = 0h = 0h = 0 from the partition function

The third argument makes use of the form of the partition function of the c = 0 model. But as
we already have shown, the partition function for the augmented c = 0 model is not the same as

38



for the minimal c = 0 model and thus especially not equal to unity. From this argument, we will
show, that we do not longer have to choose h = 0 operators as suggested by Cardy [7].

Regarding the problem mentioned above with only a single region with fixed boundary conditions,
in the Q→ 1 limit, we have

Zα = Zf 〈φ(f |α)(x0)φ(α|f)(x1)〉 = Zf × (x0 − x1)
2h . (108)

In the minimal model, both partition functions are equal to unity, thus h = 0, but in the extended
model, we do not know the exact form of Zf , hence the boundary operator is not a priori fixed in
its dimension.

3.2.4. h = c = 0h = c = 0h = c = 0 from scaling behavior

The last point addresses the transformation back onto the original region that is described by the
formula [7]

〈φ0(w0)φ1(w1) . . .〉 =
∏

i

|w′(zi)|−hi〈φ0(z0)φ1(z1) . . .〉 . (109)

The expression has a physical meaning in the general non scale invariance of critical systems which
picks up a factor (L/L0)6ac with L being the overall size of the region, L0 some non universal
microscopic scale (i.e. the lattice spacing), c the (effective) central charge and a being dependent
on the geometry (i.e. a = −π/γ if the boundary operator resides in a corner with an interior angle
γ, see [7, 49, 50]). Since percolation is assumed to be scale invariant, the effect of the conformal
mapping should vanish. But the physical properties of our system only depend on the differential
equation arising from null vectors, thus this condition only has to hold in this sense.

In general, this argument considering the finite size scaling effects depends on the asymptotic
behavior of the partition function which itself only depends on the central charge modulo 24.
Thus, in principle, we can only deduce c = 0 up to multiples of 24. Additionally, the correlation
functions are invariant in any conformal field theory as long as we take care of the Jacobian
determinant arising due to the transformation. As we will see in the following, our solution for
Watts’ and Cardy’s differential equations is merely a quotient of two partition functions and thus
the Jacobian transformation factor divides out.

3.3. The Watts differential equation

3.3.1. The original idea

Having explained why we do no longer have to stick to a c = 0 theory for percolation, we can take
a look at our results for Watts’ differential equation [78].

As already mentioned, Watts [78] derived a fifth order differential equation for Πhv, starting from
a c = 0 theory with h(1,2) = 0 boundary changing operators following Cardy’s ansatz for Πh. A
priori, as a minimal model c(3,2) = 0 we only have two primary fields within the Kac-table, the
identity residing at (1, 1) and its duplicated entry at (1, 2). Thus if we assume a null state on the
first level L−1|0〉, we quickly see that from the generic form of the level two null state follows that
L−2|0〉 = 0, too, and so on, until the only non-vanishing state is the vacuum itself. Thus, within
a true minimal model, there can not be a “direct” null vector on the fifth level whatsoever. Thus,
when talking about higher than level two null vectors in a c = 0 Kac-table based CFT, we have to
add the note that by talking about c = 0 we refer to the augmented minimal model, i.e. c(9,6) = 0.
Whether in this LCFT a null state on the fifth level exists or not remains to be shown. Nevertheless,
Watts came up with the correct differential equation for the horizontal-vertical-crossing probability
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in percolation by motivating a level five null vector which can be interpreted as a level three null
vector acting on a level two state as shown in [51]. In a c = 0 theory, it seems strange, that
in contrary to the results for Πh, the Πhv boundary operators cannot be identified directly [50].
Considering the asymptotic behavior, one can find the correct expressions for Πh and Πhv [51] by
taking linear combinations of the three physically relevant solutions of

d3

dx3
(x(x − 1))

4
3

d

dx
(x(x − 1))

2
3

d

dx
F (x) , (110)

where x is the crossing ratio and F the conformally mapped crossing probability. The equation
factorizes into [51]

(

d2

dx2
(x(x − 1)) +

1

2x− 1

d

dx
(2x− 1)2

)

d

dx
(x(x − 1))

1
3

d

dx
(x(x − 1))

2
3

d

dx
F (x) , (111)

where the rightmost part already provides us with the three expected solutions for the crossing
probabilities in percolation.

3.3.2. Interpretation as a level three null vector

Simplifying the third order equation and comparing it to the generic form of a level three null
vector in a minimal model, one finds that it has no interpretation in a c = 0 theory meaning that
we have no level three null vector in c = 0 which could give rise to Watts’ differential equation.

On the other hand, only for the special choice of the null state h = h(1,3) = − 2
3 , the correlator

containing h1 = h2 = h(1,3) = − 2
3 and h3 = h(1,5) = −1 vanishes within a c(p,1) = −24 LCFT. More

precisely, this means that there is no level three null vector equation from φh(3,1)=2 or φh(1,3)=1/3

of this form in c(9,6) = 0 whatsoever as we will show in the following.

According to [65], the level three null vector is given by

|χ(3)
(h,c)〉 =

(

L3
−1 − 2(h+ 1)L−2L−1 + h(h+ 1)L−3

)

|h〉 . (112)

In order to get a differential equation we have to remember from the first part of the thesis how
the conformal generators correspond to differential operators acting on the correlation function
H(z). The calculations can be found in detail in the appendix since the literature often includes
mistakes. The differential operators L−n are defined by

L−n(z) =
∑

i

(

(n− 1)hi

(zi − z)n
− 1

(zi − z)n−1
∂zi

)

. (113)

Letting them act on the four-point function

F (z, z1, z2, z3) ≡ 〈φh(z)φh1(z1)φh2(z2)φh3(z3)〉 , (114)

yields a quite lengthy expression. Replacing again all derivatives ∂zi
by expressions only containing

the derivative ∂z and finally taking the usual limits z1 → 0, z2 → 1 and z3 → ∞, results in the
following ordinary third order differential equation for F (z) ≡ F (z, 0, 1,∞):

0 =
d3

dz3
F (z) + 2(h+ 1)

2z − 1

z(z − 1)

d2

dz2
F (z)

+ (h+ 1)

(

h− 2h1

z2
+
h− 2h2

(z − 1)2
− 2

h3 − h− h1 − h2

z(z − 1)
+

h

z(z − 1)

)

d

dz
F (z)

+ h(h+ 1)

(

−2h1

z3
− 2h2

(z − 1)3
+

(2z − 1)(h+ h1 + h2 − h3)

z2(z − 1)2

)

F (z) . (115)
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Now we have to compare this result to Watts’ differential equation in a suitable form [78]

(

d3

dz3
+

5(2z − 1)

z(z − 1)

d2

dz2
+

4

3z(z − 1)

d

dz

)

F (z) = 0 . (116)

Obviously, these equations can not be brought to overlap in this form. Taking advantage of the
generic form of the four-point function due to its conformal invariance F (z) = zµ01(z − 1)µ02H(z)
and inserting it into (115) yields a slightly modified differential equation for H(z) for which an
appropriate choice of the h, h1, h2, h3 is possible, i.e. h = h1 = h2 = −2/3 and h3 = −1,
meaning that all four weights can be chosen from the Kac-table of one and the same minimal
CFT. Additionally, the equation belongs to c(6,1) = −24 since the highest weight representation

[−2/3] has indeed a third level null vector. Furthermore the special choice of µij = 1
3

∑

k hk−hi−hj

from
∑

j 6=i µij = −2hi, i.e. (−2/3 − 2/3 − 2/3 − 1)/3 + 2/3 + 2/3 = −1 + 4/3 = 1/3 holds.

Thus the conformal blocks of the 4-point function

〈φh=−2/3(z)φh1=−2/3(0)φh2=−2/3(1)φh3=−1(∞)〉 = zµ01(1 − z)µ02H(z) (117)

of the c = −24 theory are in one-to-one correspondence with the solutions of Watts’ differential
equation.

3.4. Properties of the c = −24c = −24c = −24 LCFT

The highest weight that gives rise to the differential equation, h = −2/3, generates a reducible
but indecomposable representation of the c(6,1) = −24 theory. From the study of c(p,1) models we
know that the OPE of two fields forming an indecomposable representation contains logarithmic
divergences. This is in perfect correspondence to the other two solutions of Watt’s original fifth
order differential equation. Thus a solution from the augmented minimal models of the type
c(3p,3q) is not surprising and it seems to be an interesting application for LCFTs [39, 32, 23]. The
logarithmic behavior of such disorder models has already been conjectured before [13] thus the
solution fits well into the general expectations.

Taking a look at the fusion rules of c(6,1) = −24, we see that [−2/3] ∗ [−2/3] = [0] + [−2/3] + [1]
which is in agreement with the three regular solutions of Watts’ equation.

Furthermore, this LCFT has, particularly with regards to percolation, a very interesting field
content. The entries on the boundary of the conformal grid (which is technically obtained by
considering c(18,3) = c(3·6,3·1))

0 − 3
8 − 2

3 − 7
8 −1 − 25

24 −1 − 7
8 − 2

3 − 3
8 0 11

24 1 13
8

7
3

25
8 4

4 25
8

7
3

13
8 1 11

24 0 − 3
8 − 2

3 − 7
8 −1 − 25

24 −1 − 7
8 − 2

3 − 3
8 0

contain the critical exponents that are assumed to appear in percolation, shifted by 1, i.e. h(1,2) =

− 3
8 and h(1,4) = − 7

8 . Thus descendants of those fields could describe the physical properties of

percolation. It should be mentioned that the h(0,0) = h(1,6) = − 25
24 field appears in the table which

is the so-called pre-logarithmic field whose operator product expansion with itself gives rise to the
indecomposable representations [19, 20, 52]. All conformal weights which appear twice in the table
above belong to such indecomposable representations.

There is another important remark to state about the rational logarithmic conformal field theory
we found to be the solution for the percolation problem. It is not astonishing that our solution, of
all possible CFTs, is just this one differing by a multiple of 24 in its central charge. Due to this
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property its partition function is equivalent to the partition function (102) of the augmented c = 0
model discussed before. More precisely, we have [19, 20]

Zc(6,1)=−24[α] = Zfull[α, β = 0] , (118)

and thus the non logarithmic parts of the partition functions are identical, meaning that they
both count the same states. This is in perfect agreement with our previous observation that most
arguments towards which CFT should be taken for percolation depend on conditions that are
blind to a change of the central charge by multiples of 24 and thus have the same effective central
charge.

3.4.1. Holding on to c = 0c = 0c = 0 in a tensor model

As shown above, the differential equation that provides us with the correct solutions for the hor-
izontal vertical crossing probability points towards a c = −24 LCFT. However, for some reasons
we might want to stick to a c = 0 CFT for percolation. Thus we try a tensor ansatz of two CFTs,
one of them being c = −24 as needed to satisfy Watts’ differential equation and the other being
c = 24. In this setup, any correlation function, or, more precisely, any field, factorizes into two parts
belonging to the two involved CFTs respectively, i.e. ΦH(z) = Φh,c=−24(z) ⊗ ΦH−h,c=+24(z).

Additionally we assume that the second factor of the third level differential equation

Gc=+24(z) = 〈Φh(z)Φh1(0)Φh2(1)Φh3(∞)〉c=+24 (119)

should be trivial since all important information is contained in the first factor given by

Fc=−24(z) = 〈Φ−2/3(z)Φ−2/3(0)Φ−2/2(1)Φ−1(∞)〉c=−24 . (120)

A perfect match would be to find

H(z) = Fc=−24(z)Gc=+24(z) =⇒ Gc=+24(z) = z−1/3(z − 1)−1/3 . (121)

which could come up ifG(z) is merely a three-point function, i.e. 〈Φ1/3(z)Φ1/3(0)Φ1/3(1)I(∞)〉c=+24.
This result has to be checked within a c = 24 CFT on existence and non vanishing.

3.4.2. Cardy’s formula and c = −24c = −24c = −24

Obviously, there is a problem now. There are two differential equations numerically “proven” to
be correct but arising from two different CFTs, both assumed to describe percolation. But which
one is the correct choice? Is there an interpretation of Cardy’s formula [7] for Πh in c = −24?

In general, Cardy’s formula arises from a level two null vector condition applied to a four-point
correlation function,

(

3

2(2h+ 1)

d2

dz2
+

2z − 1

z(z − 1)

d

dz
− h1

z2
− h2

(z − 1)2
+
h+ h1 + h2 − h3

z(z − 1)

)

F (z) = 0 . (122)

For c = −24, we have φ(1,2) with weight h = h(1,2) = − 3
8 . Now we have to check if the solutions

of the differential equation for c = −24 span the same solution space as those for c = 0, since
the latter has already been proven to be correct by numerical simulation of Langlands et. al. [56].
Thus we know that F (z) should be of the form 2 F1(1/3, 2/3, 4/3, z). A simple calculation yields

h1 = h2 = h3 = h(1,4) = − 7
8 and F1(z) = (z(z − 1))

1
4 · z 1

3 2 F1(1/3, 2/3, 4/3, z) as well as F2(z) =

(z(z − 1))
1
4 as the second solution. Hence in comparison to Cardy, the crossing probability for

percolation is given by their quotient Πh ∝ F1/F2.

42



Thus we have shown that we can yield the same horizontal crossing probability as numerically
computed by Langlands [56]. It has the desired asymptotic behavior, i.e. vanishes for z → 1 and
approaches one for z → 0. Remembering the rectangle whose corners are mapped clockwise in
decreasing order to the zi with r := (z3 − z0)/(z1 − z0), r → 0 and r → ∞, respectively, with
0 < z < 1, the correct mapping on the upper complex plane is taking z0 → z, z1 → 0, z2 → ∞
and z3 → 1.

The normalization is obtained by considering the identity

3Γ
(

2
3

)

Γ2
(

1
3

) 2 F1(1/3, 2/3, 4/3, z) = 1 − 3Γ
(

2
3

)

Γ2
(

1
3

) (1 − z)
1
3 2 F1(1/3, 2/3, 4/3, 1− z) . (123)

which yields
3Γ( 2

3 )
Γ2( 1

3 )
as a normalization factor.

Recalling the critical exponents for percolation in c = −24, i.e. the level one descendents of
h(1,2) = − 3

8 and h(1,4) = − 7
8 , we see immediately that in principle exactly the two most important

fields of percolation play also an important role in the correlation function for the horizontal
crossing probability.

3.5. Schramm Loewner evolution and percolation

3.5.1. SLE(κκκ) and Cardy’s percolation formula

Another important thing to be considered are the results of SLE for percolation, showing the
equivalence of Cardy’s formula and the results for κ = 6. At first we have to state that the
frequently cited proof of Smirnow [75] (or Dubedat [16] as well) only holds for site percolation on
a triangular lattice, and according to himself and Werner [76], the method used in [75] can not be
applied directly to bond percolation on the square lattice as discussed in this paper. The problem
with a proof of bond percolation on the square lattice seems to lie within the properties of the
hypergeometric functions which appear to be the solutions of the null vector differential equations.
As noted by L. Carleson (we found this mentioned in [8]) the horizontal crossing probability is
proportional to

∫ η

0

(t(1 − t))−2/3 dt

which is exactly the Schwarz-Christoffel mapping from the upper half plane to a equilateral triangle.
Thus, for this special lattice, Πh becomes very simple which has rigorously been proven by Smirnow
as stated above. This problem has been referred to by him as “It seems that 2π/3 rotational
symmetry enters in our paper not because of the specific lattice we consider, but rather manifests
some symmetry laws characteristic to (continuum) percolation.”. For the same reason, Dubedat’s
proof of Watts’ formula [16], using a generalized SLE(κ, ρ), precisely SLE(6, 2, 2), is only true for
the triangular case, too. The connection between SLE and triangular symmetry has also been
described by him [15].

Additionally, we know that at one point in the derivation of the differential equation for the
SLE(κ)-process, namely the identification evolution operator A with a level two null vector of a
CFT [1], the assumption, that h(1,2) = 0 is made. It has consequences on the relation between the
coefficients of the differential equation (κ, c and h(1,2)) and the evolution operator,

A = −2L−2 +
κ

2
L2
−1 vs. L−2 −

3

2(2h(1,2) + 1)
L2
−1 . (124)
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Hence, we know for 2 ≤ κ ≤ 8 that

κ

4
=

3

2(2h(1,2) + 1)
. (125)

Obviously, this leaves us with κ = 6 if we restrict ourselves to h = 0 in our ansatz for percolation (or
equivalently c(3,2) = 0 which means 3

2(2h(1,2)+1) = 3
2 ). But since there are no compulsory conditions

to justify this ansatz as explained before, we may question why we should not try h = − 3
8 and thus

κ = 24 or h = 4 and κ = 2
3 . We are aware of the fact that if we extend formula (125) to arbitrary

values of κ, a solution κ = 24 is problematic since for this value of κ the curve is space filling. Thus
this can be a hint that two dimensional critical bond percolation may have to be formulated in a
more complicated setup if it is described by a c = −24 LCFT or that for other values of κ relation
(125) has to be modified. Therefore we point out that the values of κ for c = −24 are exactly four
times those of c = 0.

3.5.2. SLE(κ; bκ; bκ; b) and a generalization of Cardy’s formula

However, we are left with the question of which of the two choices we should take for the horizontal
crossing probability since from original SLE(κ) considerations, we have no data for c = −24 (i.e.
κ = 24, 2/3 of which the former is problematic since it yields space-filling curves). But there
could be a hint how to see the right path. In 1999, Lawler, Schramm and Werner [60] found a
generalization of the SLE(κ) process characterized by a second parameter b. According to them,
one can derive a generalized Cardy’s formula

Πh(b; z) = zb+ 1
6 2F1(

1

6
+ b,

1

2
+ b; 1 + 2b; z) . (126)

which gives us back the known solution for b = 1/6. Obviously, this equation can not reproduce
all values of b for a single central charge but we could try to find a series of CFTs with four-point
functions with central charge c as a function of b ∈ Q in order to get minimal models only. Thus we
can require all boundary changing operators in the correlator to have weights in the Kac-table.

Matching the general solution of the second-order differential equation (122) arising from a level
two null field with (126) yields

F (z) = [z(1 − z)]−
2
3hΠh(b; z) , h1 = 36b2−(4h−1)2

24(2h+1) , h2 = h3 = −h(2h−1)
3(2h+1) . (127)

The question remains whether h1, h2 = h3 can be chosen from the Kac-table, too, while h resides
in it by construction. This question is non-trivial since c is already fixed by the weight of the field
generating the differential equation, h = 1

16 (5 − c ±
√

(c− 1)(c− 25)). In the following, we will
express c in this form c = 13 − 6(t + 1/t), introducing a convenient parameter t. Parameterizing
b = p/q > 0 (p, q coprime) and therefore h1 = h(r,s) as well as h2 = h3 = h(r′,s′), we see that by
inserting the solution for h that

s = t

(

r ± 2
p

q

)

, s′ = t

(

r′ ± 1

3

)

, (128)

with s, s′, r, r′ ∈ N as usual. The parameters of the conformal weights are not entirely fixed but
it is obvious, that the famous c(t,1) models with t = lcm(3, pq) will always be a possible solution
such that our requirements are fulfilled and all weights can be taken from the LCFT Kac-table.

Up to now we have overlooked a second condition. The solution F (z) we get by the above con-

siderations is only proportional to Πh(b; z) by a factor [z(1 − z)]−
2
3h. Thus we have to check if

we could try the same trick as for c = −24, i.e. proving the second solution for the second order
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differential equation to be exactly this factor. Physically this means that we have a background
charge in a free field realization of this CFT which is exactly the charge balance of the fields and
thus yielding a trivial second solution. Thus the second condition concerns the charges given by

αr,s =
1

2
(r − 1)

√
t+

1

2
(1 − s)

1√
t
, α0 =

1

2

(√
t− 1√

t

)

. (129)

Thus the condition above tells us that α1,2 + αr,s + 2αr′,s′ = 2α0. Since α1,2 + 3αr′,s′ = 2α0 is
always fulfilled, we are just left with αr,s = αr′,s′ which means that r = r′ and s = s′ and therefore
h1 = h2 = h3. Hence, for all b = p/q > 0 we can chose an LCFT from the augmented minimal
models of c(t,1) with t = lcm(3, pq) to find a solution to the generalized version of Cardy’s formula.
Defining t = 3t′, t′ ∈ N, we have

Πh(b; z) =
〈φ(1,2)(z)φ(1,3t′(1±2b))(0), φ(1,2t′)(1)φ(1,2t′)(∞)〉

〈φ(1,2)(z)φ(1,2t′)(0), φ(1,2t′)(1)φ(1,2t′)(∞)〉 . (130)

As it should be, 3t′(1±2b) is an integer for all choices of rational b, for b < 1 the minus sign should
be taken as a solution in (128), and for b > 1 the positive.

To come to the point, this is a strong hint that we should really take c = −24 as a solution for
percolation, not only since it provides both differential equations with the correct solutions for Πh

and Πhv for whom a numerical proof exists. But additionally, unlike c(3,2) = 0 with b = 1/6, it
can be extended in a unified fashion to a series of CFTs that for all rational values of b satisfy the
generalized version of Cardy’s formula.

3.6. Comments on the relation of c = 0c = 0c = 0 and c = −24c = −24c = −24

After having demonstrated how important quantities which can be derived within a c = 0 CFT
can equally well be deduced within a c = −24 rational CFT ansatz, we may ask the question how
these two theories are connected besides their effective central charges being the same, as stated
above. Therefore let us take a look at the extended Kac-tables for both models.

c(3·3,3·2) :

0 0 1
3

1 2 10
3

5 7

5
8

1
8

− 1
24

1
8

5
8

35
24

21
8

33
8

2 1 1
3

0 0 1
3

1 2

33
8

21
8

35
24

5
8

1
8

− 1
24

1
8

5
8

7 5 10
3

2 1 1
3

0 0

(131)

and c(3·6,3·1) :

0 − 3
8

− 2
3

− 7
8

−1 − 25
24

−1 − 7
8

− 2
3

− 3
8

0 11
24

1 13
8

7
3

25
8

4

4 25
8

7
3

13
8

1 11
24

0 − 3
8

− 2
3

− 7
8

−1 − 25
24

−1 − 7
8

− 2
3

− 3
8

0
(132)

Obviously, not by multiplicity but by weight, all fields of the c = 0 theory are present in the
c = −24 as well if we shift them by −1. As already mentioned, the sets of effective conformal
weights are thus equivalent. The similarities go further with remarkable consequences when we
consider differential equations due to null vectors. For instance, let us take the level two case. For
any choice of the other three fields (X,Y, Z) in the four-point function of c = 0 Kac-table fields,

〈h0
(1,2)XY Z〉 or 〈h0

(2,1)XY Z〉 , (133)
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we can find corresponding weights (X’,Y’,Z’) in the Kac-table of c = −24 such that there are
corresponding four-point functions

〈h−24
(1,2)X

′Y ′Z ′〉 or 〈h−24
(2,1)X

′Y ′Z ′〉 , (134)

which yield the same solutions with respect to the action of the level two null vector operator

3

2(2h+ 1)
L2
−1 − L−2. (135)

Since the computation is very easy, we will only state the results: Choosing for the fields X,Y, Z
any of the weights H , we have to choose for the fields X ′, Y ′, Z ′ the correpsonding weights H ′ as
given in the two following tables.

h(1,2) :
H 1/8 0 −1/24 5/8 1
H ′ −3/8 −7/8 −25/24 13/8 25/8

(136)

and analogously

h(2,1) :
H −1/24 1/8 5/8 33/8 21/8 35/24
H ′ −25/24 −1 −7/8 0 −3/8 −2/3

(137)

with h(1,2) being h = 0 and h = −3/8 and h(2,1) being h = 5/8 and h = 4 for c = 0 and c = −24,
respectively. Thus it is not surprising that Cardy’s formula [7] has also a meaning in c = −24.

Additionally, the structure of the Jordan cells of rank two within the two LCFTs is very similar,
for any non integer weight we can find triplets corresponding to an irreducible representation which
is contained in an indecomposable of the same weight which is isomorphic (with respect to the
counting of states) to a hidden indecomposable representation whose subrepresentation is present
in the Kac-table and is based on a highest weight differing by an integer from the two other triplet
members. Details on this structure can be found explained within the famous c = −2 LCFT
example [34, 35, 47]. It is present in the c(t,1) series of LCFTs [19] and is conjectured to exist in
all augmented minimal models [20]. In the present case, we find such triplets for c(3,2) = 0 and
c(6,1) = −24 respectively as

(5/8, 5/8, 21/8) ↔ (−3/8,−3/8, 13/8) (138)

(1/3, 1/3, 10/3) ↔ (−2/3,−2/3, 7/3) (139)

(1/8, 1/8, 33/8) ↔ (−7/8,−7/8, 25/8) (140)

Unfortunately, the structure of the integer weights (or, more precisely the weights that have previ-
ously been inside the Kac-table of the non augmented minimal model) can not be revealed by this
analogy since they are assumed to reside in a Jordan cell of rank three [24] which is known not to
appear in c(p,1) models. Research on the details is currently going on heading towards a clarification
of the representation structure of c(9,6) = 0 which will provide us with the necessary knowledge to
establish a well-founded link between the two LCFTs rather than just educated guesswork.
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4. Percolation as a CFT with vanishing central charge

4.1. General remarks on CFTs with vanishing central charge

During the last decade, interest in c = 0 theories rose with regards to percolation and other
disorder problems. The problem of vanishing central charge caused a vivid discussion on suitable
approaches since the canonical choice of ordinary minimal models does not seem to be sufficient
with respect to its field content. There have been several attempts before, i.e. by Cardy [9], Kogan
and Nichols [53] or Gurarie and Ludwig [41], which try to explain the deviations of the partition
function from one that have been observed by Pearce et. al. [69]. Since the present approaches in
the literature so far involve assumptions and extensions which are not necessary for c 6= 0 theories,
we will concentrate solely on known techniques to fit c = 0 into ordinary (L)CFTs.

4.1.1. Problems at c = 0c = 0c = 0

After the introduction of conformal field theories by Belavin, Polyakov and Zamolodchikov [4]
twenty years ago and the discovery of logarithmic behavior by Gurarie in 1993 [39] which led to
the investigation of so called logarithmic CFT, the understanding of most (L)CFTs, especially the

minimal models characterized by the two parameters (p, q) with q, p ∈ N, c(p,q) = 1 − 6 (p−q)2

pq
improved continually. As to CFTs whose field content can not be described solely by the Kac-
table, i. e. a non-trivial c(3,2) = 0 model, this is not the case. There is still a controversial discussion
going on about different approaches to (L)CFTs with vanishing central charge which we will try
to elucidate in this paper.

For c = 0 as an ordinary minimal model, we have (p, q) = (3, 2) and thus a Kac-table which consists
only of one field, the identity. Keeping the vanishing of the central charge in mind, we know that
Ln|0〉 = 0 for all n ∈ Z and thus the theory is trivial. But from concrete models, e. g. by Pearce
and Rittenberg [69], we can deduce that the partition function differs from one and therefore there
have to be more fields involved. More concretely, they identify an h = 1/3 primary field.

A similar problem occurred in the study of the c(p,1) models whose Kac-tables a priori are empty.
Following the procedure which is usually applied to this kind of minimal models, i. e. including
the operators on the boundary of the conformal grid into the theory, we get a non trivial c = 0
CFT. Additionally it can be shown that this procedure generates indecomposable representations
which lead to logarithms in the OPEs of some of these fields [33]. The main advantage of this
procedure is that we maintain the properties of all finite Kac-table based CFTs, e. g. the existence
of an infinite set of null vectors, thus a rather small field content and the possibility of additional
symmetries. Remarkably, up to now in all known logarithmic CFTs, i. e. the c(p,1) models, the
identity has a logarithmic partner. Taking the well known formula

hr,s(c(p,q)) =
(pr − qs)2 − (p− q)2

4pq
(141)

for q = 1 and 1 ≤ s < 3p, 1 ≤ r < 3q, i. e. the weights of the operators on the boundary of the
conformal grid and those needed for closure under fusion, we always have at least two solutions for
h = 0: s± = rp± (p−1). In a logarithmic theory, these cannot be identified with each other. Thus
taking a similar approach to construct a non-trivial c = 0 LCFT, we would expect it to contain a
degenerate vacuum as well.

There exists a variety of proposals on how to approach c = 0. Apart from the suggestions of other
LCFTs as discussed above, Cardy [9] tried a general replica ansatz in order to find a loophole to
the divergences arising in the OPE of primary fields at c = 0.
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For any conformal field theory (for the time being we will restrict ourselves to non degenerate
vacua and the holomorphic parts), we can write down the OPE of a primary scalar field φ(z) with
conformal weight h,

φh(z)φ†h(0) ∼ C1
ΦΦ

z2h

(

1 +
2h

c
z2T (0) + . . .

)

+ . . . , (142)

with C1
ΦΦ being the coefficient of the three point function usually normalized to 1 or c

h for h 6= 0.
For the ordinary minimal model c(3,2) = 0 the expression is not problematic since the only possible
choice for φ is 1 and thus h = 0. Although, if we seek to describe a model as found by [69], we
have to assume additional fields to the identity for which the division by the central charge is not
well defined.

4.1.2. Suggestions how to treat c = 0c = 0c = 0 propertly

According to Cardy [9], there are basically three ways out of the problem as the central charge
approaches zero in the OPE of primary fields as given in (142).

(I) (h, h̄) → 0 as c→ 0.

(II) C1
ΦΦ → 0 as c→ 0.

(III) Other operators arise in the OPE, canceling the divergencies.

Thus the first case can be applied to the ordinary minimal model with the Kac-table

c(2,3) = 0 : 0 0 . (143)

The second case has to be taken if we restrict ourselves to the extended Kac-table as for the c(p,1)-
models. In this case we have to normalize our three-point functions to c

hφ
and thus the condition

C1
ΦΦ → 0 as c→ 0 is satisfied trivially and the OPE

φh(z)φ†h(0) ∼ c

hz2h
+

2

z2h−2
T (0) + . . . (144)

stays regular. As discussed above, we expect the identity to have a partner field in these theories,
and thus we have to modify the OPE of primary fields.

The third case has been chosen by Kogan and Nichols [53] as well as by Gurarie and Ludwig
[41]. It includes a new concept of LCFTs which is structurally different from that of c(p,1) models.
Introducing the limiting procedure to get a logarithmic partner of the stress energy tensor, fields
outside of the Kac-table arise in the OPE of primary fields. We do not have any knowledge about
their behavior in OPEs among themselves and thus there is no a priori limit on the number of
fields available in the emerging CFT. Nothing of what is known for Kac-table based models as null
states, symmetries or representation properties can be assumed to be extended to this kind of c = 0
theory. Furthermore, this approach introduces fields that have no known direct physical meaning
at all since in all known applications for c = 0 the critical exponents of physical quantities are
expected to be out of the Kac-table. Thus it seems more natural to stay within this framework, or,
more precisely, include the operators on the boundary of the Kac-table. For example, in the work
of Pearce et al. [69], the representation belonging to h(1,3) = 1/3 is expected to play an important
role.

These are the crucial points where we do not agree with the approach of [9] who suggested that
the logarithmic partners of Kac-operators always reside outside of the Kac-table. In contrary, we
favor the ansatz of sticking to the restrictive structure of an augmented minimal model following
e. g. [20] taking the Kac-table of c(9,6) as a basis to describe a c = 0 LCFT.
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4.2. OPEs in the augmented minimal model

4.2.1. The standard assumptions for two point functions

In the following we will show how our approach differs from the usual constructions. In contrary
to our ansatz it is usually assumed that the Jordan cell exists on the h = 2 level and not on
the identity level as well. But in our opinion any theory with arbitrary central charge c 6= 0, if
extended to a logarithmic CFT, has to possess a global Jordan cell structure. In standard LCFT,
primary fields and their logarithmic partners form Jordan cells with respect to L0. The identity
always resides in such a Jordan cell and, particularly, there can not be a Jordan cell structure at
the second level without having this structure in the vacuum sector, although this is the basis for
the calculations of [41, 53, 67, 66]. At least we do not know of any LCFT whose identity does not
reside in an indecomposable representation.

We will discuss the problem in a general ansatz for arbitrary values of the central charge c. Thus
the following statements hold for any such LCFTs and, particularly, for vanishing central charge
(see e.g. [71] or [22] for an elaborate treatment). The two-point functions for the h = 0 sector in
a rank two Jordan cell setup are usually assumed to be given by:

〈0|0〉 = 〈0|1|0〉 = 0 , (145)

〈0̃|0〉 = 〈0|0̃〉 = 〈0|1̃(z)|0〉 = 1 , (146)

〈0|1̃(z)1̃(w)|0〉 = −2 log(z − w) . (147)

From the first vacuum expectation value follows directly, that any n-point function containing only
proper primary fields and their descendants, i.e. no logarithmic partner fields, vanishes. This is
also valid for the two point function of the stress energy tensor with itself, thus 〈TT 〉 vanishes in
any LCFT since its central term is proportional to the identity which can easily be seen in the
OPE given by

T (z)T (w) =
c/2

(z − w)4
1+

2

(z − w)2
T (w) +

1

(z − w)
∂T (w) . (148)

Denoting the logarithmic partner of the stress energy tensor by t(z) it follows from the standard
LCFT procedures, that the OPE between the stress energy tensor T (z) and his partner reads as

T (z)t(w) =
c/2

(z − w)4
1̃+

µ

(z − w)4
1+

2

(z − w)2
t(w) +

λ

(z − w)2
T (w) +

1

(z − w)1
∂t(w) . (149)

where the Jordan cell becomes apparent in the extra (z−w)−2 term with the normalization of the
off diagonal entries, λ, usually set to one. A very simple construction of such a logarithmic partner
field is t(z) = :1̃T :(z) which we will use in our calculations later on.

In the latter OPE, the central term is made up of two contributions, proportional to 1̃ and 1,
respectively. Taking the vacuum expectation value, we quickly see that the two-point function
vanishes for c = 0. In general, the two-point functions of the stress energy tensor pair are given
by

〈T (z)T (w)〉 = 0 , (150)

〈T (z)t(w)〉 =
b

(z − w)4
, (151)

〈t(z)t(w)〉 =
1

(z − w)4
(θ − 2b log(z − w)) , (152)

where the normalization of the two point function 〈T t〉 appears again twice in the vacuum expec-
tation value of 〈tt〉.
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4.2.2. The generic form of the OPE

As already explained in the first part of the thesis, the form of the OPE can be deduced from
global conformal invariance alone including the form of the two and three point functions and
their symmetry properties following [22, 26]. For LCFTs we have the following OPE:

φhi
(z)φhj

(w) =
∑

k

Ck
ij(z − w)hk



φhk
+
∑

{n}
β

k,{n}
ij (z − w)|{n}|φ(−{n})

hk
(w)



 (153)

where the coefficients β
k,{n}
ij of the descendant contributions,

φ
(−{n})
hk

= L(−{n})φhk
= L−n1L−n2 . . . L−nl

φhk
, (154)

are fixed by conformal covariance. The structure “constants” Ck
ij (which in an LCFT can no longer

referred to as constants since they partly become functions containing logarithms) can be derived
through the two- and three-point functions, i. e. Ck

ij = CijlD
lk, with

Dij = 〈φhi
(∞)φhj

(0)〉 ∝ δhi,hj
, (155)

Cijk = 〈φhi
(∞)φhj

(1)φhk
(0)〉 . (156)

Note that in our case of an LCFT the metric is no longer diagonal but for h ≡ hi = hj looks like

D(i,j) =

(

0 D
(0)
ΦΦ

D
(0)
ΦΦ D

(1)
ΦΦ − 2D

(0)
ΦΦ log(z − w)

)

(z − w)−2h (157)

in the notation following below.

Taking a general ansatz, the two point functions are given by

〈Φ(z)Φ(w)〉 = 0 , (158)

〈Φ(z)Φ̃(w)〉 = 〈Φ̃(z)Φ(w)〉 = D
(0)
ΦΦ(z − w)−2h , (159)

〈Φ̃(z)Φ̃(w)〉 =
(

D
(1)
ΦΦ − 2 log(z − w)D

(0)
ΦΦ

)

(z − w)−2h , (160)

with D
(0)
ΦΦ = DΦΦ̃ = DΦ̃Φ and D

(1)
ΦΦ = DΦ̃Φ̃. Here Φ denotes a primary field and Φ̃ its logarithmic

partner.

The form of the three point functions is more complicated, thus omitting the dependence on the
coordinates, z1, z2, z3 we have only to pay attention to those three point functions that at least
contain a logarithmic field Φ̃, since terms containing only Φ vanish.

〈TTΦ〉 = 0 , (161)

〈TT Φ̃〉 = C
(0)
TTΦz

h−4
12 z−h

13 z
−h
23 ,

= 〈tTΦ〉 = 〈T tΦ〉 (162)

〈ttΦ〉 =
(

C
(1)
TTΦ − 2 log(z12)C

(0)
TTΦ

)

zh−4
12 z−h

13 z
−h
23 , (163)

〈tT Φ̃〉 =
(

C
(1)
TTΦ − 2 log(z13)C

(0)
TTΦ

)

zh−4
12 z−h

13 z
−h
23 , (164)

〈T tΦ̃〉 =
(

C
(1)
TTΦ − 2 log(z23)C

(0)
TTΦ

)

zh−4
12 z−h

13 z
−h
23 , (165)

〈ttΦ̃〉 =
(

C
(2)
TTΦ − C

(1)
TTΦ(log(z12) + log(z13) + log(z23))

− C
(0)
TTΦ(log2(z12) + log2(z13) + log2(z23) − 2 log(z12) log(z13)

− 2 log(z12) log(z23) − 2 log(z13) log(z23))
)

zh−4
12 z−h

13 z
−h
23 . (166)
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With these results we can compute the structure constants in the OPE since theses three-point
functions, formerly denoted by Cijk with i, j, k ∈ {T, t,Φ, Φ̃, are connected to the structure con-
stants through the metric as stated before, i.e. Ck

ij = CijlD
lk. Inserting these results into (153),

we get the OPE.

As already stated for the case of the identity, the proportionality factors coming with the loga-
rithmic terms are always multiples of the respective correlator of fields of the same block but with
less level in the same Jordan cell. They depend on the total number of logarithmic partner fields
within the correlator. In our case, we have to look out for the contributions of the two lowest
weight fields, meaning that Φ, Φ̃ are either 1, 1̃ or T (z), t(z), which will give us the most singular
terms of the OPE of t(z)t(w).

In detail, the OPE for the LCFT case stated in (153) in its explicit form for the three interesting
cases, T (z)T (0), T (z)t(0) and t(z)t(0) is given by

T (z)T (0) = zh−4C
(0)
TTΦ

D
(0)
ΦΦ

Φ(0) , (167)

T (z)t(0) = zh−4

(

C
(0)
TTΦ

D
(0)
ΦΦ

Φ̃(0) +
C

(1)
TTΦD

(0)
ΦΦ − C

(0)
TTΦD

(1)
ΦΦ

(D
(0)
ΦΦ)2

Φ(0)

)

, (168)

t(z)t(0) = zh−4

[(

C
(1)
TTΦ

D
(0)
ΦΦ

− 2 log(z)
C

(0)
TTΦ

D
(0)
ΦΦ

)

Φ̃(0) +

(

C
(2)
TTΦD

(0)
ΦΦ − C

(1)
TTΦD

(1)
ΦΦ

(D
(0)
ΦΦ)2

− log(z)
C

(1)
TTΦD

(0)
ΦΦ − 2C

(0)
TTΦD

(1)
ΦΦ

(D
(0)
ΦΦ)2

− log2(z)
C

(0)
TTΦ

D
(0)
ΦΦ

)

Φ(0)

]

(169)

Taking into account what we already know about the OPE of T (z)T (0) and T (z)t(0), we can fix
most of the free parameters that remain in the equations above.

First of all we know that usually the OPE between the two true identities is fixed to one, and

thus D
(0)11 = 1. The link to its logarithmic partner is not fixed by any condition and thus may be

left free, for simplicity denoted by D
(1)11 = d. To be consistent with our ansatz, we have to fix the

normalization for the stress energy operator contributions to D
(0)
TT = b and D

(1)
TT = θ. From the

equations (148) and (149) we know that by comparing the coefficients, we have to put C
(0)
TTT = 2b,

C
(1)
TTT = λb+ 2θ and C

(0)
TT1 = c/2, C

(1)
TT1 = µ+ cd/2.

But we can not chose the normalization of the two-point functions of T (z) and t(z) independently
of the central charge of the given LCFT. Taking advantage of the fact that the vacuum expectation
values do not change if we extend any two-point function to a three-point function by inserting
the identity as a third field, we get relations among the undetermined constants so far. Thus the
OPE will only be consistent if we chose DTt = CTt1 = CTT 1̃ and Dtt = Ctt1 = CTt1̃ and hence

D
(0)
TT = C

(0)
TT1 from which follows directly that b = c/2. Furthermore, we have D

(1)
TT = C

(1)
TT1 and

thus µ = θ − cd/2.

This leaves us with only three free parameters – the central charge c, the normalization d of the
two point function 〈11̃〉 and θ of 〈1̃1̃〉 which can also be regarded as the central extension of the
algebra between the modes of T and t, µ which differs from θ only by a linear combination of the
other free parameters, i.e. µ = θ − cd/2 as stated above.
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Inserting the our knowledge into the general OPE, we see that t(z)t(0) has the following structure:

t(z)t(0) = z−4 (θ − log(z)c) 1̃(0)

+ z−4
(

C
(2)
TT1 − θd+ log(z)(cd− θ) − log2(z)

c

2

) 1
+ z−2

(

1 +
4θ

c
− 4 log(z)

)

t(0)

+ z−2

(

2
C

(2)
TTT − θ

c
− 4θ2

c2
− log(z)(1 − 4θ

c
) − 2 log2(z)

)

T (0) . (170)

The choice θ = 0 is similar to the result of Gurarie and Ludwig although the ansatz is quite different.
In the approach chosen above, we only see the primary fields and the logarithmic partners, but
none of the descendants. This is why our formula misses the canonical terms proportional to ∂t,
∂T and ∂1̃. Particularly, the formula given above does not account for any descendants that could
affect the multiplicities of t and T and their descendants since both are level two descendants of
the identity and its logarithmic partner, respectively, i.e. L−21 = T and L−21̃ = t, and both arise
in the most singular term proportional to z−4.

The result is also very similar to the one derived in [53] (but only for θ = 0, too). Allowing for
the terms containing 1̃ to differ, we see that the two characteristic parameters can be described

by the central charge and C
(2)
TTT . But θ = 0 implies a vanishing two-point function for 〈T t〉 and

〈tt〉, at least for our ansatz of a Jordan cell structured identity sector with b = c
2 = 0. Thus if our

ansatz is correct we should try to find a realization where this crucial parameter is fixed to some
non vanishing constant.

Most of the results concerning the stress energy tensor have also been derived in [65], especially
b = c

2 and the normalization of the Jordan cell of the stress energy tensor.

4.2.3. Consequences on the c→ 0c→ 0c→ 0 catastrophe

The impact on the OPE of primary fields of the results derived in the previous section is immense.

Therefore let us recall what we know about the general form of the OPE in equations (153ff).

Inserting the fact that for our ansatz (and h = 0) we have D
(0)
ΦΦ ∝ 〈 c

2 1̃(w) + µ1〉 = 0, we run
into a problem inverting the matrix of two-point functions which is needed to raise indices, since
Dij = (Dij)

−1. Hence the OPE of two primary fields in a c = 0 theory with a Jordan cell structure
on the h = 0 level and T (z), t(z) being descendants of the h = 0 fields, remains ill defined. The
only loophole to this could be to define the normalization of the three-point functions to c

hφ
. Thus

for h 6= 0, the metric would be invertible again following the suggestion of Cardy [9].

Since for h = 0 the problem is not solved yet, this brings up the question whether for c = 0 we can
still stick to our usual definition of vacuum expectation values or if we should simply redefine the
vev to be proportional to

〈·〉 := 〈0| · |0̃〉 + 〈0̃| · |0〉 , (171)

leaving us with the problem of how expressions like the vev of the OPE of t(z)t(w) may be dealt
with. A motivation for this behavior may be found in [40] where the vanishing of the fermionic
path integral in the c = −2 LCFT is discussed.
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4.3. A bosonic free field construction

4.3.1. Ansatz

To illustrate the results obtained from the most singular term of the OPE by global conformal
invariance, we take a free field construction with arbitrary central charge for the stress-energy
tensor and its logarithmic partner field:

T (z) = −1

2
:∂φ(z)∂φ(z): + i

√
2α0:∂

2φ(z): , (172)

t(z) = :λφ(z)
exp(i

√
2aφ(z))

i
√

2α0
T (z): . (173)

For the logarithmic partner of the identity we chose a vertex operator ansatz with conformal weight
h(a) = a2 − 2aα0 = 0 which means that we have two possible weights for the Vertex operator,
h(a = 0) for the true identity and h(a = 2α0) for the second. Thus we expect another vertex
operator to appear in the OPE behaving like the identity in correlators. Hence we define with
a = 2α0: 1̃(z) = λφ(z)

exp
(

i
√

2aφ(z)
)

i
√

2α0

, (174)1′(z) = exp(i
√

2aφ(z)) ≡ 1 . (175)

Similar considerations can be found within the Coulomb gas formalism used in [52].

Note that there is a subtlety here. This ansatz can not be directly compared to the general formula,
especially not for t(z)t(w) as in (170) since the propagator is not of the standard form. We do
not only have the identity 1 and its logarithmic partner field 1̃ but in addition also a field that is
conjugated to the identity, 1′ = exp(i

√
2aφ) with a = 2α0. Thus contributions by this field have to

be taken into account, too. This leads to different prefactors and changes in signs. Additionally,
it is not surprising that we are not able to get the coefficients of T (w) on the rhs of T (z)t(w) and
those of the most singular terms in the OPE of t(z)t(w) to overlap. This is simply due to the fact
that the normalization of the Jordan cell of the stress energy tensor is already fixed by that of the
identity. This is the reason why some factors appear twice as often as expected when compared
to the OPE derived by Gurarie and Ludwig [41] or Kogan and Nichols [53] apart from the simple
fact that their whole ansatz lacks a logarithmic partner for the identity.

The reader may ask the question why we did not choose a better matching ansatz, but the answer is
simple. We want to have logarithmic terms of orders not higher than two and a simple constructed
t(z) =: T (z)1̃(z) : in a bosonic free field construction. As 1̃(z) is a weight h = 0 field, it may only
consist of a linear combination of fields φ and not their derivatives. Taking the general Ansatz for
t(z) =

∑∞
n,m=0 an : φn(z)T (z) : and computing the OPE T (z)t(w) which is known to be of the

following form

T (z)t(w) ∼
c
2 1̃(w)

(z − w)4
+

2t(w) + λT (w)

(z − w)2
+
∂t(w)

z − w
, (176)

it is easy to check that we end up with a vertex operator ansatz for 1̃ since otherwise we can
not bring the OPE to overlap with (176). Thus, for a bosonic free field construction, there is no
way around these vertex operator ansatz but it may certainly be that within a fermionic approach,
things will turn out comparable to the general form discussed in the previous section. Additionally,
it would have a natural truncation feature due to the nilpotence of its fields such that logarithmic
terms of higher order than log2 are not able to appear by construction.
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4.3.2. The non logarithmic OPEs

Of course, the OPE of the stress energy tensor with itself is as usual,

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
, (177)

thus, due to the vanishing vacuum expectation value (vev) of 1, we have

〈T (z)T (w)〉 = 0 . (178)

The first different result appears in the correlator of the stress energy tensor with its logarithmic
partner:

T (z)t(w) ∼
c
2 1̃(w)

(z − w)4
+

2t(w) + λT (w)

(z − w)2
+
∂t(w)

z − w
, (179)

where λ depends on the normalization of the off-diagonal entries of the Jordan cell between T (z)
and t(z), i. e. L0t(z) = 2t(z) + λT (z). These two results are exactly of the form that we derived
within our general ansatz. Since the vev of 1̃ does not vanish in an LCFT, we are left with a
vacuum expectation value of

〈T (z)t(w)〉 =
c
2

(z − w)4
= 0 . (180)

However, for c = 0 this is equal to zero, too.

4.3.3. The logarithmic OPE

The OPE of t(z) with itself, however, is more complicated as one would expect from the derivation
from its most singular term due to the appearance of descendants of 1 and 1̃ as already mentioned
above. Another point to bear in mind are the divergences of lowest order, log(z − w)(z − w)0,
which have been omitted in the literature before.

To keep things as simple as possible, we will just state our result for the case that 4− 2a2 > 0 and
omit the terms that are dispensable for the comparison with the results of [41] and our general
calculation (170) which means that we will restrict ourselves to the contributions of T, t, 1 and 1̃
up to first order without logarithmic divergences or composite fields. The full results will be given
in the appendix. Choosing λ = 1

2 and for c = 1 − 24α2
0 = 0, α2

0 = 1
24 we get:

t(z)t(w) ∼
(

−2 log(z − w)1̃(w) +
1

2c
+ log2(z − w) + 3 log(z − w)

) c
2

(z − w)4

+
(1 − 4 log(z − w))t(w) +

(

3 log(z − w) + 2 log2(z − w)
)

T (w)

(z − w)2

+
(1 − 4 log(z − w))∂t(w) +

(

3 log(z − w) + 2 log2(z − w)
)

∂T (w)

2(z − w)
. (181)

Of course, the first line vanishes for c = 0 (due to 〈0|1|0〉 = 0) but since these terms may be
interesting for the examination of LCFTs with arbitrary central charge, we stated them in spite
of that. Additionally we should mention that it is obviously possible to chose a quasi-primary 1̃
since its OPE with the stress energy tensor looks like

T (z)1̃(w) ∼ λ1
(z − w)2

+
∂w1̃(w)

(z − w)
. (182)
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Recapitulating, we have shown that as in [41], we have θ = 0, which means that we would have
vanishing vacuum expectation values for c = 0. These results suggest that we can not take a naive
free field construction to describe the problem, since all vacuum expectation values vanish. In order
to get the necessary central extensions, more sophisticated constructions should be considered, such
as several free fields or deformations of the stress energy tensor similar to the ones introduced in
[17]. In contrast to their assumption, we found a number of more complicated fields than t(w),
T (w) or their descendants although there are no other primaries involved.

Therefore we tried to find a way out by searching for
∑

{(p,q)} cp,q = 0 to construct a c = 0 theory
out of tensorized minimal models to get a non trivial CFT with vanishing central charge in chapter
seven.

Another possibility would be to find a fermionic theory with vanishing central charge.

4.4. Discussion of the two LCFT approaches

As already stated in section 4.1.2, we have a third possible loophole to avoid the c→ 0 catastrophe
in the OPEs of primary fields. In the following we will explain why the ansatz we chose, i.e. the
one based on the augmented minimal model, may be a more natural solution.

Therefore we will give a brief overview on the ansatz of Kogan and Nichols [53] followed by our
comments on their approach. Additionally we will state some facts about the c = 0 case including
implications for percolation and a discussion of current research on augmented c(p,q) models with
q > 1 which have not been treated in the literature so far, focusing on p = 3, q = 2.

4.4.1. The replica approach to vanishing central charge

Following the replica approach of [9], Kogan and Nichols [53] introduced another field T̃ with
dimension h = 2 + α(c) which satisfies α(c) → 0 for c→ 0 being normalized to

〈T̃ (z)T̃ (0)〉 =
1

c

B(c)

z4+2α(c)
(183)

with B(c) = −h2

2 +B1c+ . . . . Thus for c→ 0 this vacuum expectation value diverges.

Then, after a small c expansion, the OPE of our primary field looks like

φh(z)φ†h(0) ∼ 1

z2h

(

1 +
2h

c
z2T (0) + 2z2+α(c)T̃ (0) + . . .

)

+ . . .

∼ 1

z2h
+

1

z2h
z2+α(c)

(

2h

c
(1 − α(c) log(z))T (0) + 2T̃ (0) + . . .

)

+ . . . , (184)

which again is well defined if the parameter µ defined by

µ−1 ≡ lim
c→0

−2α(c)

c
= −2α′(c) , (185)

is not equal to zero.

The logarithmic partner field can now be identified with a linear combination of the stress energy
tensor and the new h = 2 + α(c)-field,

h

µ
t =

2h

c
T + 2T̃ , (186)
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satisfying
L0T = 2T L0t = 2t+ T. (187)

This means that t(z) is a field of the same conformal weight living in a Jordan cell due to L0 being
non-diagonalizable. Thus the OPE becomes

φh(z)φ†h(0) ∼ 1

z2h

(

1 +
h

µ
(t(0) − log(z)T (0)) + . . .

)

+ . . . , (188)

which yields the following vevs after redefining t→ t+ γT with a suitable choice of γ:

〈T (z)T (0)〉 ∼ 0 , (189)

〈T (z)t(0)〉 ∼ b

z4
, (190)

〈t(z)t(0)〉 ∼ −2b log z

z4
. (191)

This result can only be obtained by assuming that we are dealing with non-degenerate vacua,
which means, that the vacuum expectation value of the identity operator does not vanish and we
have only one h = 0 field contributing to the OPE. It is based on the following algebra between
the modes of T (z) and t(z):

[Ln, t(z)] = zn

{(

z
d

dz
+ z(n+ 1)

)

t(z) + (n+ 1)T (z)

}

+
µ1
6
n(n2 + 1)zn−2 , (192)

where for their ansatz, we have µ = b meaning that the central term of the algebra between the
modes of t(w) and T (z) is proportional to the vacuum expectation value of the OPE of these
fields.

Thus, since 〈1〉 6= 0, the most singular part of the OPE yields the vacuum expectation value as
stated in (190). This is only true if we assume L−2|0〉 = T (0)|0〉 not to be zero by construction
since the action of the conformal generators on the vacuum vanish in a c = 0 CFT but to be some
kind of generalized null state on which l−2|0〉 = t(0)|0〉 is non orthogonal. To keep this assumption
it is crucial not to have a logarithmic partner of the identity and thus 〈1〉 6= 0.

4.4.2. Comments on the replica approach

However, we have a few comments on this non-rational ansatz for c = 0 LCFTs.

A rather small one is about the fact that for all c 6= 0 µ may be set to zero by a redefinition
lm → lm − 2µ

c Lm. Hence it is not obvious how this limit may equal the value of µ−1 for c = 0
due to the discontinuity of being free to choose µ = 0 for c 6= 0 but staying with fixed µ for c = 0.
Furthermore, there is no physical quantity known to correspond to this arbitrary parameter µ, thus
it is rather awkward that it may show up with such a significant role in our (L)CFT. Furthermore
it is questionable whether we can define T̃ and t in such a way that they are divergent for c → 0.
More on suitable choices of µ will be given in section 4.5.2.

Additionally, we doubt that it is possible to choose the vacuum as a “stand alone” irreducible
representation not contained in an indecomposable one based on a second h = 0 state, called 1̃.
But as already mentioned, in a Kac table based (L)CFT ansatz for c = 0 we have indeed three
h = 0 fields which seem to belong to rank three Jordan cell structures whose details are not yet
clarified.

For Kogan and Nichols [53], the term proportional to the identity in the central extension of the
algebra between the Laurent modes of t(z) and T (z), µ, is the same as the proportionality factor of
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〈T t〉. In our calculations, however, they are different since we assume a Jordan cell on the identity
level, yielding

[Ln, t(z)] = zn

{(

z
d

dz
+ z(n+ 1)

)

t(z) + (n+ 1)T (z)

}

+
µ1+ c

2 1̃
6

n(n2 + 1)zn−2 , (193)

or, equivalently T (z)t(0) ∼ (µ1+b1̃)z−4+. . . . Thus b = c
2 in our case and 〈T t〉 has to vanish, too.

A priori, as already discussed above, there is no constraint on the choice of µ. Following Gurarie
and Ludwig [41], we will show how various values of µ affect the theory in the next section.

Thus we have motivated that in a c(9,6) = 0 (L)CFT, there is no level two state which is non
orthogonal to T (0)|0〉, especially not t(0)|0〉 since the two-point function has to vanish. Thus in
this setup, we can keep the full (and not only global) conformal invariance of the vacuum. This
may lead to consequences on the construction of the stress energy tensor.

4.5. More on the c(9,6) = 0c(9,6) = 0c(9,6) = 0 augmented minimal model

4.5.1. Consequences of full conformal invariance

If we restrict ourselves to the case of not having a Jordan cell structure at the (h = 0)-level, we
encounter the fact that any two-point function involving T has to vanish. This follows directly
from the behavior of the identity sector in a (c = 0)-theory unless we introduce a non orthogonal
state to L−2|0〉. We know that by global conformal invariance and the highest weight condition,
we have Ln1 = Ln|0〉 = 0 for all n ≥ −1. In the following, let n be > 0. Starting with a vanishing
central charge and h = 0, we know

0 = 2nL0|0〉 +
c

12
n(n2 − 1)|0〉

= [Ln, L−n]|0〉
= LnL−n|0〉 − L−nLn|0〉
= LnL−n|0〉 , (194)

and thus we have L−n|0〉 = 0 for all n ∈ Z. This means that if we expand T (z) in powers of z, i. e.

T (z) =
∑

n∈ZLnz
−n−2, (195)

we clearly see that 〈0|T (z) = T (z)|0〉 = 0 if we impose full conformal invariance. This is possible if
all states are orthogonal to Ln|0〉 which is the case for the minimal model c(3,2) = 0. More precisely:
the null vector is present in the irreducible vacuum representation but may disappear in the full
indecomposable representation based on |0̃〉. Note that if we include fields outside the Kac-table
without assuming a Jordan cell structure for the identity level with L01̃ = 1, non orthogonal states
can be constructed since there are no constraints on their properties.

Nevertheless in our ansatz (the c(9,6) = 0 augmented minimal model), the state usually identi-
fied with the stress energy tensor seems to decouple completely from the theory since it is even
orthogonal to l−2|0〉 (there may be additional h = 2 fields present in the theory which are non
orthogonal but we do not know about any of them up to now). However, this also forces any two
point function involving T to vanish (as long as we do not modify the theory as touched in section
3.3). Thus the first two-point function not to vanish is 〈tt〉.

If we assume L−2|0〉 = T (0)|0〉 to be just an ordinary null state, |χ(2)
(h,c)〉, and not a fundamental

property of the vacuum at c(3,2) = 0, we can obtain different results.
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What we already know is that L−2|0〉 is a null state with respect to the action of all Ln. Thus we
only have to check whether this holds for the action of the ln, too. Taking a look at

〈0|[l2, L−2]|0〉 = 〈0|4l0|0〉 + 〈0|µ|0〉 = µ , (196)

we see that it is consistent to assume a non-orthogonal state to L−2|0〉 if we exclude a Jordan cell
for the identity. Even the Jordan cell relation between the usual state associated with the stress
energy tensor and its logarithmic partner turns out to be as expected -

L0t(z)|0〉 ≡ L0l−2|0〉 = 2l−2|0〉 + L−2|0〉 = 2t(0)|0〉 + T (0)|0〉 . (197)

Once more we stress that t(z) can only be non-orthogonal in a non Kac based approach to c = 0
since otherwise we know that we have a Jordan cell connection between the identity and other
states which would cause the two-point function to vanish:

〈0|[l2, L−2]|0〉 = 4〈0|l0|0〉 + 〈0|µ1+
c

2
1̃|0〉 = 0 . (198)

4.5.2. Null vectors in a Kac-table based c = 0c = 0c = 0 theory

Having agreed upon the proposal that the Kac-table of the augmented c = 0 should be taken, we
know that under certain circumstances we can have null vectors in our theory. The assumption
that no other fields than those of the Kac-table and their descendants may arise is crucial to this
calculation since we do not have any knowledge on the properties of non-Kac fields. Thus we point
out that there are problems with any arguments based on the assumption of null vectors in a non
strictly Kac-based theory.

Assuming t(z)|0〉 to have a mode expansion like T (z)|0〉, i. e.

t(z)|0〉 =
∑

n∈Z lnz−n−2|0〉 , (199)

and following the idea of Gurarie and Ludwig [41], we will try to construct universal null vectors
that do not only vanish under the action of all Ln for n > 0 but also after the application of lm
for m > 0. We have to emphasize that this simple expansion of t(z) only holds when acting on a
highest weight state.

The ordinary level two null vector Now let us have a look at the ordinary null vector on the
second level

|χ(2)
(h,c)〉 =

(

L−2 −
3

2(2h+ 1)
L2
−1

)

|h〉 , (200)

h =
1

16

(

5 − c±
√

(c− 1)(c− 25)
)

. (201)

What we already know is that L{n}|χ(2)
(h,c)〉 = 0 for all |{n}| > 0 with {n} = {n1, n2 . . . , nk} and

|{n}| =
∑

i ni. But what about the action of l{n} on |χ(2)
(h,c)(0)〉? For |{n}| > 3 this is obviously

trivial since commuting the l{n} to the right will leave us with some linear combination of l{m}
and L{m′} with |{m}|, |{m′}| > 0 which vanishes. Thus the interesting cases are the application of
l2 and l21.

Therefore we have to use the algebra of the Ln and ln. The algebra between the modes of T (z),

[Ln, Lm] = (n−m)Ln+m , (202)
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is just the same as in any ordinary CFT in spite of lacking the central extension due to the vanishing
central charge. The mixed commutator is given by

[Ln, lm]|0〉 = (n−m)ln+m|0〉 + (n+ 1)Ln+m|0〉 +
µ

6
n(n2 − 1)δn+m,0|0〉 . (203)

Now we can test the known level two null vector from the ordinary theory by applying the generators
of t(z):

l2|χ(2)
(h,c)〉 =

[(

4 − 18

2(2h+ 1)

)

l0 + h+ µ

]

|h〉 . (204)

This result raises the question what the action of l0 on some state of weight h might be. According
to Gurarie and Ludwig [41], it can be chosen to be equal to zero, l0|h〉 = 0, but this statement
contradicts the level one null vector assumption, i. e.

(

l−1 −
1

2
L−1

)

|h〉 = 0 (205)

for h 6= 0. To be sure, we prove this statement here. Thus let us have a look at this mixed level

one null state from a general point of view, i. e. |χ̃(1)
(h,c)〉 = (al−1 + bL−1) |h〉 for some suitable |h〉.

Claiming Ln|χ̃(1)
(h,c)〉 = 0 for all n > 0 it follows that

(2al0 + 2h(a+ b)) |h〉 = 0 . (206)

Here we have to distinguish between different cases:

(a) h 6= 0 :
l0|h〉 = 0 ⇒ a = −b ,
l0|h〉 = h|h〉 ⇒ a = − 1

2b .
(207)

Obviously the first result of (207) contradicts (205) but the second result is ok to agree upon.

(b) h = 0, and thus

Ln|χ̃(1)
(h,c)〉 = aLnl−1|0〉 = −a(n+ 1)ln−1|0〉 (208)

which vanishes for n > 0.

Thus with reservation regarding the action of ln on the mixed level one null state, |χ̃(1)
(h,c)〉 is a

null vector for all h, but only with the special choice of l0|h〉 = h|h〉 [41]. Conversely, if we say
l0|h〉 = 0, we do not have the special null vector (205) (independent on what the commutator of

the modes of t(z) alone might be). However, for h = 0, |χ̃(1)
(h,c)〉 is obviously a null state for both

choices since in spite of the fact that we do not know the exact form of the commutator [ln, lm],
we can conclude that [l1, l−1] ∝ al0 + bL0 +φ with φ being a linear combination of other primaries
of weight zero. Thus for h = 0 and the action of l0 on |h〉 either being 0 or h, we can conclude
that l−1|0〉 = 0 since

l1|χ̃(1)
(h,c)〉 = al1l−1|0〉 + bl1L−1|0〉 = a[l1, l−1]|0〉 + 2bl0|0〉 = 0. (209)

and thus l−1|0〉 ∝ L−1|0〉 = 0. Therefore we can show that l21|χ(2)
(h,c)〉 = 0 for h = 0 and thus

l0|0〉 = 0:

l1|χ(2)
(h,c)〉 = l1

(

L−2 −
3

2(2h+ 1)
L2
−1

)

|0〉

= (3l−1 + L−1) |h〉 −
3

2(2h+ 1)
(2L−1l0 + 2l−1) |h〉

= 0 . (210)
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Unfortunately, there is no criterion to draw the right conclusion which is the right choice of the
action of l0 on a state. Thus we will state or results of equation (204) for both choices of l0,
i.e. l0|h〉 = h|h〉 or = 0, we found µ = 0 for h = 0 and µ = − 5

8 for h = 5
8 .

Although it is always consistent to assume the existence of the special null vector (205) if we choose

l0|h〉 = h|h〉, we do not know whether for h 6= 0 we have l1|χ̃(1)
(h,c)〉 = 0. But we have to be careful

since this is only a circular reasoning.

The level three null vector We could try the same procedure on the level three null state

|χ(3)
(h,c)〉 =

(

L3
−1 − 2 (h+ 1)L−2L−1 + h (h+ 1)L−3

)

φh , (211)

h =
1

6

(

7 − c±
√

(c− 1)(c− 25)
)

. (212)

Testing the level three null vector for consistency by applying l3 to |χ(3)
(h,c)〉, we find that for both

choices of l0, i.e. l0|h〉 = h|h〉 or = 0, we have µ = 0 for h = 2 and µ = 5
6 for h = 1

3 . However,
we have to bear in mind that these are only necessary conditions, we did not check whether the
action of l2l1 and l31 supports this result or gives a contradiction, meaning that there is no level
three null state in the theory any more.

Comments on percolation as an augmented c = 0 model Independently we can conclude that
we do not only have different theories for different values of µ but also that any given c = 0
theory splits up in certain subsets of primary operators which ”cannot give rise to [...] differential
equations simultaneously in the same theory” [41].

However, even only from the necessary conditions for the values of µ we see that for µ 6= 0 we can
not have a level three and level two null vector differential equation in the augmented c = 0 model.
Moreover, since the algebra between the ln and the Lm is the same as for the paper of Gurarie
and Ludwig [41], we have shown that if c = 0 should be a model for percolation which does not
exhibit the divergence problem, we have to take µ = 0 and thus can not take an ansatz without
a Jordan cell for the identity. Again it is very interesting, that the unphysical parameter µ seems
to disappear if we want to have null states for the whole theory, this means also that there is no
central term in the algebra between the ln and Lm and all vacuum expectation values of the stress
energy tensor and its logarithmic partner vanish since µ = θ for c = 0. .

4.5.3. The field content of a c(9,6) = 0c(9,6) = 0c(9,6) = 0 augmented minimal model

After having talked so much about the augmented c(9,6) = 0 model, we should give at least a
brief overview on its features since there has been not much literature published about generalized
augmented c(p,q) models with q > 1 so far. Following the ideas of [20], we know that the smallest

closing set of modular functions larger than the 1
2 (p − 1)(q − 1) characters for the minimal c(p,q)

model contains 1
2 (3p−1)(3q−1) individual functions which stay in some suitable linear combination

in direct correspondence to the number of highest weight representations or fields in the augmented
Kac-table. The modular functions can be found by solving the modular differential equation as
introduced in [64, 63]. The generalization of this method towards LCFT can be found in [25]. In our
example, the c(9,6) model, twenty torus amplitudes can be matched with the twenty representations
of the modular group being present in the Kac table of c(9,6) = 0 [24]. Closed sets of such functions
can only be obtained considering an odd multiple of (p, q) thus usually one tries to get along with
the smallest set, i. e. (3p, 3q).
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Thus contrary to the minimal model c(p,q) we technically have to deal with an extended Kac-table
of c(3p,3q):

c(9,6) :

0 0 1
3 1 2 10

3 5 7

5
8

1
8 − 1

24
1
8

5
8

35
24

21
8

33
8

2 1 1
3 0 0 1

3 1 2
33
8

21
8

35
24

5
8

1
8 − 1

24
1
8

5
8

7 5 10
3 2 1 1

3 0 0

. (213)

As it is always the case for c(3p,3q) augmented models, we have 3× 2 fields in the Kac-table which
are of weight h = 0 and lie within the upper left and lower right corners of the replicated minimal
Kac-tables on the diagonal. It is conjectured [24] that all fields inside the boundary of the replicated
minimal Kac-table belong to rank 3 Jordan cells whose detailed structure is not yet known.

Fields on the boundary of the replicated minimal Kac-table show up with a multiplicity of 2 × 2
and belong to rank 2 Jordan cells. The corresponding representation of weight h(r,s) +rs is present
1 × 2 times as expected, too. Additionally, the fields on the edges of the boundaries show up only
1× 2 times as well, with their corresponding representations of weight h(p,q) + pq/4 showing up at
the anti-diagonal edges.

Thus in the special case of c = 0 we have two highest weights which do not form Jordan cells,
i.e. − 1

24 ,
35
24 while the other operators of the boundary of the conformal grid are arranged in triplets

of which two states of the same weight form an indecomposable representation and one belongs
to an irreducible representation which is differing by an integer in its weight (more precisely rs),
i.e.

(

5

8
,
5

8
,
21

8

)

=

(

5

8
,
5

8
, 2 +

5

8

)

,

(

1

3
,
1

3
,
10

3

)

=

(

1

3
,
1

3
, 3 +

1

3

)

,

(

1

8
,
1

8
,
33

8

)

=

(

1

8
,
1

8
, 4 +

1

8

)

. (214)

Due to these indecomposable representations, logarithms arise in the OPEs and especially in the
fusion product of the pre-logarithmic field φ− 1

24
with itself.

The sector containing the h = 0 fields has a more complicated structure. We have three multiple
weights (0, 0, 0), (1, 1) and (2, 2) but we do not yet know how they are arranged among the other
two fields of weights 5 and 7, respectively. As stated above, it is conjectured [24] that they may
form a rank three Jordan cell structure whose details are currently being worked out. Additionally,
we can not exclude exotic behavior such as Jordan cells with respect to other generators than L0,
e. g. W-algebra zero modes. Even worse, there might exist indecomposable structures with respect
to Ln, n 6= 0, as in [55].

As far as we know there has not been any research concerning this issue before. It seems reasonable
to assume a structure related to that of the c(p,1) models which has already been discussed in detail
[34], [35], [47], but obviously at least for the integer weights it can not be the whole story.

If we accept that the Kac-table of c = 0 has to be extended beyond its minimal truncation, we
immediately encounter a problem. The field corresponding to the entry (2, 3) in the Kac-table has
a negative conformal weight h2,3 = −1/24. Hence, the theory cannot be unitary. Furthermore,
the effective central charge ceff = c − 24hmin with hmin the minimal eigen value of L0 is then
given by ceff = (c = 0) − 24(h = −1/24) = 1. It follows that such a theory cannot be rational
with respect to the Virasoro algebra alone, but only quasi-rational. However, there presumably
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exists an extended chiral symmetry algebra, W(2, 15, 15, 15) under which the theory is rational
[24]. Fortunately, most of the structures which will interest us in this paper can be studied from
the the perspective of the Virasoro algebra.

As a concluding remark, let us note that there seems to be a connection to c(6,1) = −24 which
is the only rational (L)CFT with equal central charge modulo 24 and thus exhibiting the same
modular properties. This theory also has effective central charge one. Unfortunately, the analogies
only hold for the boundary of the Kac table and therefore we can only deduce the properties for
the representations from the boundary of the Kac-table of the c = 0 model and not for the integer
weight states.

4.6. The forgotten loophole

4.6.1. Tensorized (L)CFTs with c = 0c = 0c = 0

Obviously there is a fourth way out of the dilemma. Taking two non-interacting CFTs with central
charges c1 and c2 = −c1, respectively, and tensorizing them, we get a CFT with vanishing central
charge again but the OPE (142) looks like

φh(z)φ†h(0) ∼ C1
ΦΦ

z2h

(

1 +
2h

c1
z2(Tc1(0) − T−c2(0)) + . . .

)

+ . . . , (215)

which is perfectly well defined for c = 0 if c1 6= 0.

But the result comes with a price, too: we have to introduce a new field t(z) := Tc1(z) − T−c2(z)
which can be shown to satisfy the following OPEs with the stress energy tensor [41]

T (z)T (0) ∼ 2T (0)

z2
+
T ′(0)

z
+ . . . , (216)

T (z)t(0) ∼ c1
z4

+
2t(0)

z2
+
t′(0)

z
+ . . . , (217)

t(z)t(0) ∼ 2T (0)

z2
+
T ′(0)

z
+ . . . . (218)

The OPE of the tensorized c = c1 +c2 = 0 LCFT model consists of an ordinary CFT part from the
c2-sector and a LCFT part from the c1 sector. Thus we would get a c = 0 theory with logarithmic
operators without vanishing two-point function.

Operators in the full tensorized theory therefore are just direct products φ
(0)
h = φ

(1)
h1

⊗ φ
(2)
h2

whose
weights are given by the sum of both parts h = h1 + h2. Thus the OPE of a primary field is given
by (see [53])

φ
(0)
h (z)φ

(0)
h (0) = φ

(1)
h1

(z)φ
(1)
h1

(0) ⊗ φ
(2)
h2

(z)φ
(2)
h2

(0)

∼ 1

z2h1

(1(1) + z2 2h1

c1
T (1)(0) + . . .

)

× 1

z2h2

(1(2) + z2 2h2

c2
T (2)(0) + . . .

)

+ . . .

∼ 1

z2h

(

1 + z2

(

2h1

c1
T (1)(0) +

2h2

c2
T (2)(0)

))

, (219)

which is well defined since the ci 6= 0 and the theories by themselves are regular.
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4.6.2. The general case

In some cases we may not be able to choose a (bosonic) free field construction for the stress-energy-
tensor. Thus we have to take a look at the general OPEs for a tensorized theory of an LCFT with
central charge c1 and an ordinary CFT with c2 = −c1. We start with the known OPEs

T (i)(z)T (i)(w) =
ci
2

(z−w)4 + 2T (i)(w)
(z−w)2 + ∂wT (i)(w)

(z−w) ,1̃(1)(z)1̃(1)(w) = log2(z − w)1(1) + 2 log(z − w)1̃(1)(w) ,

T (1)(z)1̃(1)(w) = 1(1)

(z−w)2 + ∂w 1̃(1)(w)
(z−w) ,

(220)

and we define

t(1)(w) := :T (1)1̃(1):(w) , (221)

t(0)(w) := t(1)(w) ⊗ 1(2) + (α1(1) + β1̃(1)(w)) ⊗ T (2)(w) . (222)

To obtain the two point functions, we make the ansatz:

T (0)(z) = T (1)(z) ⊗ 1(2)(z) + 1(1)(z) ⊗ T (2)(z)

t(0)(z) = t(1)(z) ⊗ 1(2)(z) + (α1(1)(z) + β1̃(1)(z)) ⊗ T (2)(z) .
(223)

This leaves us with the following results for T (0)(z)T (0)(w) and T (0)(z)t(0)(w):

T (0)(z)T (0)(w) = T (1)(z)T (1)(w) + T (2)(z)T (2)(w)

∼
c1

2 + c2

2

(z − w)4
+

2(T (1) + T (2))(w)

(z − w)2
+
∂w(T (1) + T (2))(w)

(z − w)

=
2T (0)(w)

(z − w)2
+
∂wT

(0)(w)

(z − w)
, (224)

whereas the OPE with its logarithmic partner

T (0)(z)t(0)(w) = T (1)(z)t(1)(w) ⊗ 1(2) + (α1(1) + β1̃(1)) ⊗ T (2)(z)T (2)(w) (225)

∼
c1

2

(

(1 − β)1̃(1) − α1(1)
)

⊗ 1(2)

(z − w)4
+

2t(0)(w) + T (1)(w) ⊗ 1(2)

(z − w)2
+
∂wt

(0)(w)

(z − w)

yields a non-vanishing vev with a modified b-term:

〈T (0)(z)t(0)(w)〉 =
c1

2 (1 − β)

(z − w)4
. (226)

For the OPE of the logarithmic partner fields, we get

t(0)(z)t(0)(w) ∼ 1

(z − w)4

((

1 + α2 c2
2

)

+
(c1

2
+ β2 c2

2

)

log2(z − w)

−2
(c1

2
+ β2 c2

2

)

log(z − w)1̃(w) + αβ1̃c2 +
(c1

2
+ β2 c2

2

)

:1̃(z)1̃1(w):
)

+
1

(z − w)2

(

2
(

T (0)(w) − (1 − β2)T (2)(w)
)

log2(z − w)

−4
(

t(0)(w) − αβ1̃T (2)(w)
)

log(z − w) + 2t(0)(w) + 2αβ1̃T (2)(w)

+
(

T (0)(w) − (1 − β2)T (2)(w)
)

:1̃(w)1̃(w):
)

+
1

(z − w)

((

∂T (0)(w) − (1 − β2)∂T (2)
)

log2(z − w)

−2
(

∂t(0)(w) − αβ1̃∂T (2)(w)
)

log(z − w)

+∂t(0)(w) + αβ1̃∂T (2)(w) + ∂
((

T (0)(w) − (1 − β2)T (2)(w)
)

:1̃(w)1̃(w):
))

+
(

log2(z − w) − 2 log(z − w)1̃(w)
)

·
(

:T (0)(w)T (0)(w): − (1 − β2):T (2)(w)T (2)(w):
)

, (227)
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where we suppressed the labels for the tensor factors as they are clear from the context. Obviously
the only possibility to get nothing but ”zero charge” quantities on the rhs is to put α = 0 and
β = 1 which means, that we are left with vanishing vevs for 〈TT 〉 and 〈T t〉. In that case the
equations would be of the same form as for the ordinary c = 0 LCFT and our construction would
be useless. To be exhaustive, we will give the vev of this calculation, too,

〈t(0)(z)t(0)(w)〉 = c2
αβ +

(

1 − β2
)

log(z − w)

(z − w)4
. (228)

One of many possible applications is a tensor product of a c = −2 theory and four Ising models.
This ansatz has many advantages, e. g. a logarithmic pair in the identity sector of the part with
c = −2 and the closure under fusion of a small subset of the fields.

As stated in [54] and [53], this corresponds to an SU(2)0 or OSp(2|2)−2 model, where the loga-
rithmic structure appears in the c = −2 part.

The Ising Model Remembering the Kac-table for the Ising model (35), we can compute the
fusion rules:

σ × σ = 1+ ε , (229)

σ × ε = σ , (230)

ε× ε = 1 . (231)

For c = c2,1 = −2, we will use the same notation as in the first part of this thesis, i.e. for the
indecomposable representation of the h = 0 sector R1, consisting of two fields with h = 0 whose
details are not important for our further discussion and two others, i.e. µ with h = − 1

8 and ν with
h = 3

8 . These fields obey

µ× µ = µ× ν = ν × ν = R1 , (232)

µ×R1 = ν ×R1 = µ+ ν , (233)

R1 ×R1 = 2R1 . (234)

It is easy to check, that the symmetrized fields of the four Ising models 1, E1, E2, E3, E4 and
S (where Ei denotes the totally symmetric tensor product of i fields ε and 4 − i fields 1 and
S = ⊗4σ ≡ (σ, σ, σ, σ)) close under fusion. From these fields tensorized with those of c = −2 we
can choose a consistent subset (R1, 1), (R1, Ei), (µ, S) and (ν, S). Obviously, (ν, S) has conformal
weight h = 5

8 and (µ, S) has conformal weight h = 1
8 which are fields assumed to appear in

percolation. However, if percolation can be described by a c = 0 model such as (c = 2)⊗ (c = −2),
the question remains how Watts’ differential equation [78] can be derived through a level three
null vector condition acting on a four point function of boundary changing operators in this theory
[28].

The operator product expansion The OPE of the tensorized c = 0 model, consists of an ordinary
CFT part from the c = 2 sector and and LCFT part from the c = −2 sector. To obtain the two
point functions, we make the same ansatz as before (223)

T (z) = :∂θ+(z)∂θ−(z): , (235)1̃(z) = :θ−(z)θ+(z): , (236)

t(z) = :T (z)1̃(z): . (237)
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The results for 〈T t〉 and 〈T t〉 are exactly the same as for the general case. Since the OPE of
t(z)t(w) is relatively short, we will state all terms:

t(0)(z)t(0)(w)

= t(1)(z)t(1)(w) +
(

α+ 2αβ1̃+ β21̃(z)1̃(w)
)

T (2)(z)T (2)(w)

∼ 1

(z − w)4
(

log2(z − w) + 2 log(z − w)1̃(w) + 1
)

+

3
∑

i=0

log(z − w)∂i1̃(w)

i!(z − w)4−i

+
1

(z − w)2

(

[

log(z − w) − 2 log2(z − w)
]

T (1)(w) + [2 − 4 log(z − w)] t(1)(w)
)

+
1

2(z − w)

(

[

log(z − w) − 2 log2(z − w)
]

∂T (1)(w) + [2 − 4 log(z − w)] ∂t(1)(w)
)

+
c2

2 (α2 + 2αβ1̃− β2(2 log(z − w)1̃+ log2(z − w))

(z − w)4

+
2(α2 + 2αβ1̃− β2(2 log(z − w)1̃ + log2(z − w))T (2)(w)

(z − w)2

+
∂w[(α2 + 2αβ1̃− β2(2 log(z − w)1̃+ log2(z − w))T (2)(w)]

(z − w)
. (238)

Note that since the θ anti-commute, :1̃(w)1̃(w): vanishes.

Obviously here, too, it is not possible to reduce the rhs of the equation to terms only consisting
of the “neutral” operators, since it would be necessary to set α = 0 and β = 1 which means that
the OPEs of T 0(z)t0(w) would vanish. Even the vev of the two-point function of the logarithmic
partner vanishes in this case:

〈t(0)(z)t(0)(w)〉 = c2
αβ + 2(1 − β2) log(z − w)

(z − w)4
. (239)
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5. Conclusions

5.1. Watts’ differential equation

In our first paper about Watts’ differential equation [78] we have shown that the only possible way
to interpret this equation within an (L)CFT null vector condition is the c(6,1) = −24 LCFT of the
triplet series which excludes any Kac-table based c = 0 model. Thus if the differential equation
for the (numerically proven) horizontal-vertical crossing probability Πhv has a meaning in CFT,
it arises from a third level null vector differential equation acting on the four point function of
boundary operators 〈φh1,3=−2/3(z)φ−2/3(0)φ−2/3(1)φ−1(∞)〉 in an c(6,1) = −24 LCFT.

The LCFT solution also provides the horizontal crossing probability Πh whose exact form has
already been provided by Cardy [7]. These results raise the question whether we should rather
model percolation via an c = −24 ansatz in LCFT than with vanishing central charge. The new
interpretation is suggested by several arguments which show that c = −24 fits more naturally on
the set of problems containing percolation, i.e. the generalized Cardy’s formulas within an extended
Schramm Loewner evolution usually called SLE(κ, b). Since the commonly used arguments in favor
of c = 0 (and thus null vector conditions based on h = 0 fields) only fix the central charge modulo
24, there are no strict arguments left that contradict our solution. Moreover, some of the previous
assumptions even turn out to be problematic such as the minimal model (with partition function
Z = 1) excluding the boundary operator at position (1, 3) or (3, 1) from the Kac-table needed for
the horizontal-vertical crossing setup.

Providing a proof for our proposal would clearly go beyond the scope of this thesis, since it already
turned out to be impossible to use the known techniques developed by Smirnov for the horizontal
crossing probability for bond percolation.

Some questions still remain, concerning the connection to the various SLE approaches. The crossing
probabilities Πh and Πhv have already been proven by Smirnov [75] via an ordinary SLEκ and
Dubedat [16] via an extended SLE(κ, ρ), respectively, but only for site percolation on the triangular
lattice. Thus it would be interesting how those results can be extended to bond percolation on the
square lattice and if they support or obstruct the c = −24 proposal.

Besides the discussion whether one or the other ansatz is correct, another important issue is
to investigate in more detail the close relationship between conformal field theories whose central
charges differ by multiples of 24, especially why c = −24 and c = 0 have so many similar properties
concerning percolation.

5.2. c = 0c = 0c = 0 and percolation

In our investigation of the structure of (L)CFTs with vanishing central charge we chose a new
approach based on the augmented minimal model c(9,6) = 0, including a Jordan cell structure on

the identity level with respect to L0, i.e. L01̃ = 1. From this assumption follows immediately the
Jordan cell connection of the level two descendants of 1 and its logarithmic partner 1̃, i.e. L−21 ≡
T (0) and L−21̃ ≡ t(0), being connected by L0t(z) = 2t(z) + λT (z). A special feature of this setup
is the vanishing of any two-point function involving T (z). Depending on the different resolutions
of this puzzle, one is forced to take certain consequences into account. If we stick to taking
T (z)|0〉 ≡ 0 in the irreducible vacuum representation of the Virasoro algebra, we might reconsider
the field-state-isomorphism for c = 0. Also, the assumption of a logarithmic partner of the identity
naturally leads to a vanishing of all correlation functions which only involve proper primary fields.
The stress energy tensor is a proper primary field in the case of vanishing central charge.
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A possible way out of this dilemma is to interpret the vanishing of correlators as being due to the
presence of certain zero modes. Such behavior is well known in fermionic theories as ghost systems,
particularly in c = −2. Only when the zero modes are canceled due to certain field insertions we
get non-vanishing results. It would be most tempting to try to construct a free field realization of
a c = 0 theory as a Kac-table based theory with anti-commuting fields.

We presented several arguments why the Kac table based ansatz is more promising than the replica
approach introduced by Gurarie and Ludwig [41] or Kogan and Nichols [53], especially with respect
to its interpretation in physics and determination of the field content. Furthermore, in addition to
Cardy’s proposals [9], we gave a fourth loophole to the c→ 0 catastrophe within an (L)CFT setup
and gave examples for both approaches to c = 0.

Since none of the approaches to c = 0 currently seems to be able to fulfill all desired features at a
time we suggest deeper going investigation of the subjects related to the problems discussed in this
theis. This includes a fermionic realization of the augmented minimal model and, above all, general
research on the representation theory of the augmented minimal c(9,6) = 0 model with extended
Kac table [24], or, in general, the extension of the formalism for c(p,q=1) models to arbitrary q.

5.3. General remarks

We believe that the results of this paper have been a small but important step towards the im-
plementation of percolation models within an LCFT approach. We have shown that we should
reconsider widely accepted assumptions such as the postulation of c = 0 for percolation and Jordan
cell structures on higher levels without the same structure for the identity in the c(9,6) = 0 theory.
More precisely, we proved that there can not be a level three and level two null vector condition in
a c = 0 augmented minimal model simultaneously for a standard assumption of the action of l0, the
zeroth mode of the logarithmic partner of the stress energy tensor t(0). This would exclude either
Watts’ or Cardy’s differential equation for the two respective crossing probabilities in percolation
within a Kac table based ansatz for c = 0.
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A. Appendix

A.1. Differential equations from null vector conditions

Since the calculation given in Di Francesco [14] has several printing errors although the result is correct,
the calculations of the level two and three null vectors will be given here.

A.1.1. The level two null vector differential equation

In its general form, the differential equation for a four-point function generated by the the level two null

state
�
L2

−1 − 3
2(h+1)

L−2

�
|h〉 = 0, is given by"

∂2
z0

− 3

2(h + 1)

 X
i=1,2,3

hi

z2
i0

− 1

zi0
∂zi

!# Y
0≤i<j≤3

z
µij

ij G(z) = 0 , (240)

where the four-point function 〈φ0(z0)φ1(z1)φ2(z2)φ3(z3)〉 can be written as
Q

0≤i<j≤3 z
µij

ij G(z) ≡ f(z̃)G(z)

with z being the anharmonic ratio, z̃ = {z0, z1, z2, z3} and µij = 1
3

�P
k hk

�
− hi − hj . In the following, we

will pull the factor before G(z) through and therefore introduce a short hand notation for the differential
equation �

D2
z0

− 3

2(h + 1)
(Czi + Dzi)

�
f(z̃)G(z) = 0 . (241)

Taking a look at the different contributions,

D2
z0

f(z̃)G(z) = (D2
z0

f(z̃))G(z) + 2(Dz0f(z̃))(Dz0G(z)) + f(z̃)D2
z0

G(z) , (242)

Czif(z̃)G(z) = f(z̃)CziG(z) , (243)

Dzif(z̃)G(z) = (Dzif(z))G(z) + f(z̃)DziG(z) , (244)

we have to compute

Dz0f(z̃) = f(z)
X

i=1,2,3

µ0i

(z0 − zi)
, (245)

D2
z0

f(z̃) = f(z)

  X
i=1,2,3

µ0i

(z0 − zi)

!2

−
X

i=1,2,3

µ0i

(z0 − zi)2

!
, (246)

Dzif(z̃) = f(z)

0BB� X
i6=j=1,2,3
j=0,1,2,3

µij

zij

1CCA . (247)

Taking advantage of the property of primary fields, that they transform with a Jacobian factor only when
executing the limit z0 → z, z1 → 0, z2 → 1 and z3 → ∞, we have to substitute the differentiation with

respect to the zi as well, i.e. ∂zi = ∂z
∂zi

∂z and ∂2
z0

= ∂2z
∂z2

0
∂z +

�
∂z
∂z0

�2

∂2
z . Thus we have to compute the

respective terms, i.e.

∂z

∂z0
=

(z1 − z3)(z2 − z3)

(z2 − z1)(z0 − z3)2
→ 1 , (248)

∂z

∂z1
=

(z0 − z1)(z2 − z3)

(z0 − z3)(z2 − z1)2
→ z , (249)

∂z

∂z2
=

(z3 − z1)(z0 − z1)

(z0 − z3)(z2 − z1)2
→ 1 − z , (250)

∂z

∂z3
=

(z0 − z2)(z0 − z1)

(z2 − z1)(z0 − z3)2
→ 0 , (251)
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and thus ∂2
z0

→ ∂2
z as well. Thus the differential equation becomes�

µ01(µ01 − 1)

z2
+

µ02(µ02 − 1)

(z − 1)2
+ 2

µ01µ02

z(z − 1)
+

3

2(h + 1)

�
µ01 − h1

z2
+

µ02 − h2

(z − 1)2

�
−µ12

z
(z − 1) +

3

2(h + 1)

�
2z − 1

z(z − 1)
+ 2

µ01

z
+ 2

µ02

z − 1

�
∂z + ∂2

z

�
G(z) = 0 . (252)

Now we take advantage of the special form of G(z) = z−µ01(z − 1)−µ02H(z). Pulling the prefactor of
H(z) through the differential equation again, we get the final form of the level two null vector differential
equation: �

2(h + 1)

3
∂2

z +
2z − 1

z(z − 1)
∂z − h1

z2
− h2

(z − 1)2
+

h0 + h1 + h2 − h3

z(z − 1)

�
H(z) = 0 . (253)

A.1.2. Level three from global conformal invariance

This time, we will try to use a simpler procedure since the pulling through of the prefactor f(z) is quite
complicated due to the presence of third order derivatives. Thus we impose the constraints following from
the conformal Ward identities trying to find expressions for the derivatives with respect to the zi.

Firstly, we take the conformal Ward identity for L−1, solving for ∂z1 :

3X
i=0

∂zi〈φ0(z0)φ1(z1)φ2(z2)φ3(z3)〉 = 0 ⇒ ∂z1 = −∂z0 − ∂z2 − ∂z3 . (254)

Secondly, we take the respective identity for L0 and solved it for ∂z2 , inserting the known expression of
∂z1 :  

3X
i=0

zi∂zi + hi

!
〈φ0(z0)φ1(z1)φ2(z2)φ3(z3)〉 = 0 . (255)

(z0∂z0 + h0 − z1(∂z0 + ∂z2 + ∂z3) + h1 + z2∂z2 + h2 + z3∂z3 + h3) 〈φ0(z0) . . .〉 = 0 (256) 
(z0 − z1)∂z0 + (z2 − z1)∂z2 + (z3 − z1)∂z3 +

3X
i=0

hi

!
〈φ0(z0) . . .〉 = 0 (257)

Thus the final result for ∂z2 is given by:

∂z2 = − (z0 − z1)

(z2 − z1)
∂z0 − (z3 − z1)

(z2 − z1)
∂z3 −

P3
i=0 hi

(z2 − z1)
. (258)

Thirdly, we do the same thing for L1, solving for ∂z3 : 
3X

i=0

z2
i ∂zi + 2zihi

!
〈φ0(z0)φ1(z1)φ2(z2)φ3(z3)〉 = 0 . (259)

0 =

(
z2
0∂z0 − z2

1

 
∂z0 − (z0 − z1)

(z2 − z1)
∂z0 − (z3 − z1)

(z2 − z1)
∂z3 −

P3
i=0 hi

(z2 − z1)
+ ∂z3

!
−z2

3

 
(z0 − z1)

(z2 − z1)
∂z0 +

(z3 − z1)

(z2 − z1)
∂z3 +

P3
i=0 hi

(z2 − z1)

!
+ z2

3∂z3 + 2
3X

i=0

zihi

)
〈φ0(z0) . . .〉

=

��
z2
0 − z2

1 + z2
1
(z0 − z1)

(z2 − z1)
− z2

2
(z0 − z1)

(z2 − z1)

�
∂z0

�
z2
3 − z2

1 + z2
1
(z3 − z1)

(z2 − z1)
− z2

2
(z3 − z1)

(z2 − z1)

�
∂z3

+
(z2

1 − z2
2)
P3

i=0 hi

(z2 − z1)
+ 2

3X
i=0

zihi

)
〈φ0(z0)φ1(z1)φ2(z2)φ3(z3)〉 , (260)
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with

(z2
1 − z2

2)
(z3 − z1)

(z2 − z1)
= −(z3 − z1)(z1 + z2) (261)

z2
3 − z2

1 − (z3 − z1)(z1 + z2) = (z3 − z1)(z3 + z1 − z1 − z2)

= (z3 − z1)(z3 − z2) , (262)

and analogously for z3 → z1 : (z0 − z1)(z0 − z2):

∂z3 = − (z0 − z1)(z0 − z2)

(z3 − z1)(z3 − z2)
∂z0 +

(z1 + z2)
P3

i=0 hi

(z3 − z1)(z3 − z2)
− 2

P3
i=0 zihi

(z3 − z1)(z3 − z2)
. (263)

Inserting the outcome into our previous results, we get the equations for ∂z2 and ∂z1 .

∂z2 = − (z0 − z1)

(z2 − z1)
∂z0 − (z3 − z1)

(z2 − z1)
∂z3 −

P3
i=0 hi

(z2 − z1)

= −
�

(z0 − z1)

(z2 − z1)
− (z3 − z1)

(z2 − z1)

(z0 − z1)(z0 − z2)

(z3 − z1)(z3 − z2)

�
∂z0

−
�

(z3 − z1)

(z2 − z1)

(z1 + z2)

(z3 − z1)(z3 − z2)
+

1

(z2 − z1)

� 3X
i=0

hi +
(z3 − z1)

(z2 − z1)

2
P3

i=0 zihi

(z3 − z1)(z3 − z2)

= − (z0 − z1)(z0 − z3)

(z2 − z1)(z2 − z3)
∂z0 +

(z1 + z3)
P3

i=0 hi

(z2 − z1)(z2 − z3)
− 2

P3
i=0 zihi

(z2 − z1)(z2 − z3)
(264)

∂z1 = −∂z0 − ∂z2 − ∂z3

=

�
(z0 − z1)(z0 − z3)

(z2 − z1)(z2 − z3)
+

(z0 − z1)(z0 − z2)

(z3 − z1)(z3 − z2)
− 1

�
∂z0

− (z1 + z3)
P3

i=0 hi

(z2 − z1)(z2 − z3)
+

2
P3

i=0 zihi

(z2 − z1)(z2 − z3)
− (z1 + z2)

P3
i=0 hi

(z3 − z1)(z3 − z2)
+

2
P3

i=0 zihi

(z3 − z1)(z3 − z2)

= − (z0 − z3)(z0 − z2)

(z2 − z1)(z3 − z1)
∂z0

− ((z3 − z1)(z1 + z3) − (z2 − z1)(z1 + z2))
P3

i=0 hi

(z2 − z1)(z2 − z3)(z3 − z1)
+

((z2 − z1) − (z3 − z1))2
P3

i=0 zihi

(z2 − z1)(z2 − z3)(z3 − z1)

= − (z0 − z3)(z0 − z2)

(z2 − z1)(z3 − z1)
∂z0 +

(z3 + z2)
P3

i=0 hi

(z2 − z1)(z3 − z1)
− 2

P3
i=0 zihi

(z2 − z1)(z3 − z1)
. (265)

Thus for i 6= j 6= k we get:

∂zi = − (z0 − zj)(z0 − zk)

(zj − zi)(zk − zi)
∂z0 +

(zj + zk)
P3

i=0 hi

(zj − zi)(zk − zi)
− 2

P3
i=0 zihi

(zj − zi)(zk − zi)
. (266)

The differential equation for the third level null vector is given by:

L3
−1 − 2(h + 1)L−1L−2 + (h + 1)(h + 2)L−3 , (267)

which is equivalent to

L3
−1 − 2(h + 1)L−2L−1 + h(h + 1)L−3 . (268)

Since nothing is acting on L−1 and L−3; we can take the limit z0 → z, z1 → 0, z2 → 1 and z3 → ∞
directly. Additionally we get a further contribution from ∂zi∂z0H(z) since the ∂zi are functions of ∂z0 and

∂z0

�
∂z
∂z0

�
vanishes but not ∂zi(∂z0) which gives us an additional term of 2(h+1)

z(z−1)
∂z when L−2 is applied to

L−1.

∂zi∂z0z = (∂zi(∂z0z))∂z + (∂z0z)(∂ziz)∂2
z −→

8><>:∂z + (z − 1)∂2
z for i = 1

−∂z − z∂2
z for i = 2

0 for i = 3

. (269)
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Thus we will get two additional terms to the expected ∂2
z term which add up to: −2

z
∂z + 2

(z−1)
∂z =

2
z(z−1)

∂z.

∂z1 = − (z0 − z3)(z0 − z2)

(z2 − z1)(z3 − z1)
∂z0 +

(z3 + z2)
P3

i=0 hi

(z2 − z1)(z3 − z1)
− 2

P3
i=0 zihi

(z2 − z1)(z3 − z1)
(270)

→ (z − 1)∂z + h0 + h1 + h2 − h3 , (271)

and

∂z2 = − (z0 − z1)(z0 − z3)

(z2 − z1)(z2 − z3)
∂z0 +

(z1 + z3)
P3

i=0 hi

(z2 − z1)(z2 − z3)
− 2

P3
i=0 zihi

(z2 − z1)(z2 − z3)
(272)

→ −z∂z − h0 − h1 − h2 + h3 . (273)

It is interesting to note that all contributions from ∂z3 vanish in the z3 → ∞ limit due to their order in
z3. Thus we are left with

L−1 = ∂z , (274)

L−2 =
3X

i=0

hi

(zi − z0)2
− ∂zi

(zi − z0)

=
h1

z2
+

h2

(z − 1)2
+

h3 − h0 − h1 − h2

z(z − 1
− 2z − 1

z(z − 1)
∂z , (275)

L−3 =

3X
i=0

2hi

(zi − z0)3
− ∂zi

(zi − z0)2

= −2h1

z3
− 2h2

(z − 1)3
+

(2z − 1)(h0 + h1 + h2 − h3)

z2(z − 1)2
+

z3 − (z − 1)3

z2(z − 1)2
∂z , (276)

Hence our differential operator, which shall act on G(z), becomes

∆G
(1,3) = ∂3

z − 2(h + 1)

�
h1

z2
+
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(z − 1)2
+
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z(z − 1)
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z(z − 1)

�
∂z
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�
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− 2h2
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+
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z2(z − 1)2
+

z3 − (z − 1)3

z2(z − 1)2
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�
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z + 2(h + 1)
2z − 1

z(z − 1)
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+(h + 1)
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+

h − 2h2

(z − 1)2
− 2

h3 − h0 − h1 − h2

z(z − 1)
+

h + 2

z(z − 1)

�
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+h(h + 1)

�
−2h1

z3
− 2h2

(z − 1)3
+

(2z − 1)(h0 + h1 + h2 − h3)

z2(z − 1)2

�
. (277)

A.1.3. Level three following Di Francesco

Since we applied the method above for the first time, we checked it using the known one already shown
for the case of the level two null vector differential equation.

A level three null vector is defined through the differential operator

L3
−1 − 2(h + 1)L−1L−2 + (h + 1)(h + 2)L−3 =: ∆(1,3) , (278)

which is fixed by global conformal invariance. The Li are given by

L−r(z0) =
X
i≥1

(r − 1)hi

(zi − z0)r
− 1

(zi − z0)r−1
∂zi . (279)
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The four-point function can be expressed by

〈φ0(z0) · · ·φ3(z3)〉 =
3Y

i<j

(zi − zj)
µij G(z) =: f(z)G(z) =: H(z) , (280)

with z being the anharmonic ratio.

Thus we have

L−1 = ∂z0 , (281)

L−2 =
X
i≥1

hi

(zi − z0)2
− 1

(zi − z0)
∂zi , (282)

L−3 =
X
i≥1

2hi

(zi − z0)3
− 1

(zi − z0)2
∂zi . (283)

Now we will have a look at the mixed term. For our considerations, it is easier, to simplify ∆ with the
help of the Virasoro commutation relation. This provides us with an extra term −2(h + 2)L−3.

∆−2,−1
(1,3) H(z) =

0�X
i≥1

hi

(zi − z0)2
− 1

(zi − z0)
∂zi

1A ∂z0H(z)

=
X
i≥1
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∂z0H(z) −

X
i≥1

1
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∂zi∂z0H(z)

=
X
i≥1

hi

(zi − z0)2
∂zH(z) −

X
i≥1

1

(zi − z0)
∂zi(∂z0z)∂zH(z)

=
X
i≥1

hi

(zi − z0)2
∂zH(z) −

X
i≥1

1

(zi − z0)
((∂zi(∂z0z))∂z + (∂ziz)(∂z0z))∂z∂z)H(z) .

(284)

Next we have to translate our derivatives with respect to the zi into derivatives with respect to the
anharmonic ratio z = (z0−z1)(z2−z3)

(z0−z3)(z2−z1)
. Afterwards, we take the limits z0 → z, z1 → 0, z2 → 1 and

z3 → ∞. Most of this has been stated before for the second level null state (see equations (248) to (251)).
Analogously, ∂2

z0
→ ∂2

z and ∂3
z0

→ ∂3
z within this limiting procedure. The mixed derivatives however are a

bit more complicated as we have seen in (269) With these results, we can write:

L−1 = ∂z0

→ ∂z , (285)

L−2 =
X
i≥1

hi

(zi − z0)2
− 1

(zi − z0)
∂zi

→ h1

z2
+

h2

(z − 1)2
+

(z − 1)

z
∂z − z

(z − 1)
∂z , (286)

L−3 =
X
i≥1

2hi

(zi − z0)2
− 1

(zi − z0)3
∂zi

→ −2h1

z3
+

−2h2

(z − 1)3
− (z − 1)

z2
∂z +

z

(z − 1)2
∂z

=
−2h1

z3
+

−2h2

(z − 1)3
+

�
1

z2
+

1

(z − 1)2
+

1

z(z − 1)

�
∂z , (287)

L−2L−1 =

0�X
i≥1

hi

(zi − z0)2
− 1

(zi − z0)
∂zi

1A ∂z0

→
�

h1

z2
+

h2

(z − 1)2

�
∂z +

1

z

�
∂z + (z − 1)∂2

z

�
+

1

(z − 1)

�
−∂z − z∂2

z

�
. (288)
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To compute the differential operator ∆1,3 for the level three null vector condition, it is easier to replace
L−1L−2 = L−2L−1 + L−3. Inserting the expressions we have derived so far, it can be written down as:

∆H
(1,3) = L3

−1 − 2(h + 1)L−1L−2 + (h + 1)(h + 2)L−3

= L3
−1 − 2(h + 1)L−2L−1 + [(h + 1)(h + 2) − 2(h + 1)]L−3

= ∂3
z + 2(h + 1)

2z − 1

z(z − 1)
∂2

z

+
(h + 1)

z2(z − 1)2
�
(3h + 2 − 2h1 − 2h2)z

2 + (−2 − 3h + 4h1)z + h − 2h1

�
∂z

+
h(h + 1)

z3(z − 1)3
�
−2(h1 + h2)z

3 + 6h1z
2 − 6h1z + 2h1

�
. (289)

Remembering the result from global conformal invariance alone as in the previous subsection following
[28], we find the following expression for the differential operator acting on the four-point function

∆G
(1,3) = ∂3

z + 2(h + 1)
2z − 1

z(z − 1)
∂2

z

+
(h + 1)

z2(z − 1)2
�
(5h + 2 − 2h3)z

2 + (−5h − 2h2 − 2 + 2h3 + 2h1)z − 2h1 + h
�
∂z

+
h(h + 1)

z3(z − 1)3
�
2(h − h3)z

3 + 3(h1 + h3 − h − h2)z
2 + (h + h2 − h3 − 5h1)z + 2h1

�
.(290)

If we compare the results directly, we would end up with the condition h + h1 + h2 − h3 = 0. But in that
case we would have overlooked that they act on functions of z differing by a scaling prefactor which after
being pulled through the differential operator yields exactly the missing terms. This occurs since in the
ansatz of [28], the correlator is taken directly at the points 0, 1, z,∞ and is not obtained via the limiting
procedure, thus the results differ by the Jacobian factor.

A.2. Mode expansions of logarithmic partner fields and the mixed algebra

A.2.1. The algebra between the modes of T (z)T (z)T (z) and t(z)t(z)t(z)

We use the general ansatz for a logarithmic field,

φ̃h(z) =
X

m∈Z,q∈N0

φm,q logq(z)z−m−h , (291)

to calculate the commutator by comparison of the powers of log(w) and w on both sides of the equation
[·, ·] = . . .. Note that this method is only applicable to the mixed algebra and the ordinary between the Ln

alone since otherwise the residue theorem would have to be applied to the non analytic function log(w).

[Ln, t(w)] =
X
m∈Z
q∈N0

[Ln, lm,q ] log
q(w)w−m−2

=

I
0

dz zn+1T (z)t(w)

=

I
0

dz zn+1

�
c/21̃ + µ1
(z − w)4

+
2t(w) + λT (w)

(z − w)2
+

∂t(w)

(z − w)1

�
= wn−2 n(n2 − 1)

6

�
c/21̃ + µ1�+ (n + 1)wn (2t(w) + T (w)) + wn+1∂wt(w)

=
X
m∈Z
q∈N0

logq(w)w−m−2

��
n(n2 − 1)

6

�
c/21̃ + µ1� δn+m,0 + (n + 1)Ln+m

�
δq,0

(n − m)ln+m,q + (q + 1)ln+m,q+1

�
. (292)
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from which we may extract the commutator

[Ln, lm,q] =

�
n(n2 − 1)

6

�
c/21̃ + µ1� δn+m,0 + (n + 1)Ln+m

�
δq,0

+(n − m)ln+m,q + (q + 1)ln+m,q+1 . (293)

A rather practical than elegant way out of the problem of complicated commutators as (293) is the
application of the whole thing to the vacuum (or any other highest weight state). Imposing regularity at
w → 0 we can conclude, that all modes with q 6= 0 have to vanish in that case. Thus we are left with an
analytic expression for t(w), i. e.

t(w)|0〉 =
X
m∈Z lmw−m−2|0〉 , (294)

and we could even calculate the OPE as in the usual way for non logarithmic fields,

[Ln, lm]|0〉 =
1

(2πi)2

I
0

dw wm+1

I
0

dz zn+1

�
c/21̃ + µ1
(z − w)4

+
2t(w) + λT (w)

(z − w)2
+

∂t(w)

(z − w)1

�
|0〉

=
1

2πi

I
0

dw wm+n−1 n(n2 − 1)

6
(
c

2
1̃+ µ1)|0〉

+
1

2πi

I
0

dw wm+n+1(n + 1)(2t(w) + λT (w))|0〉 +
1

2πi

I
0

dw wm+n+2∂t(w)|0〉

=

�
n(n2 − 1)

6
(
c

2
1̃+ µ1)δn,−m + (n + 1)(2ln+m + λLn+m) − (n + m + 2)ln+m

�
|0〉 ,

(295)

with lm,0 ≡ lm and therefore

[Ln, lm]|0〉 = (n − m)ln+m|0〉 + (n + 1)λLn+m|0〉 +
n(n2 − 1)

6
µδn+m,0|0〉 , (296)

with T (z)t(w) as given in (149).

A.2.2. Mode expansion of t(z)t(z)t(z) in c = −2c = −2c = −2

As a concrete example for a non trivial mode expansion containing logarithms, we chose the c = −2 CFT
which is known to have a special realization in terms of the two free fields

θ± = θ±
0 log(z) + ξ± +

X
n6=0

θ±
n z−n , (297)

with the modes of θ± obeying the canonical anti-commutation relations:

{θ±
n , θ∓

m} =
1

n
δm+n,0 , (298)

{ξ±, θ∓
0 } = ±1 . (299)

The logarithmic partner of the identity is given by1̃(z) := :θ−θ+:(z) =
X
n∈Z �ın + log(z)̃ın + log2(z)̂ın

�
z−n . (300)

Inserting (297), we observe
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1̃(z) := :θ−θ+:(z)

= :
�
θ−
0 log(z) + ξ− +

P
n6=0 θ−

n z−n
��

θ+
0 log(z) + ξ+ +

P
m6=0 θ+

mz−m
�
:

= log2(z):θ−
0 θ+

0 : + log(z)

24�:θ−
0 ξ+: + :ξ−θ+

0 :
�

+

0�X
n6=0

�
:θ−

n θ+
0 : + :θ−

0 θ+
n :
�
z−n

1A35
+:ξ−ξ+: +

X
n6=0

�
:θ−

n θ+
−n: +

�
:ξ−θ+

n : + :θ−
n ξ+:

�
z−n

�
+

X
m,n6=0
n6=m

:θ−
n θ+

−m:zm−n . (301)

Now we can identify the terms. For n 6= 0 the modes of 1̃(z) are

ı0 = :ξ−ξ+: +
X
n6=0

:θ−
n θ+

−n: , (302)

ın =
X
n6=0

�
:ξ−θ+

n : + :θ−
n ξ+:

�
z−n +

X
n,m6=0,n6=m

:θ−
n θ+

−m:zm−n , (303)

ı̃0 = :θ−
0 ξ+: + :ξ−θ+

0 : , (304)

ı̃n =
X
n6=0

�
:θ−

n θ+
0 : + :θ−

0 θ+
n :
�

, (305)

ı̂0 = :θ−
0 θ+

0 : , (306)

ı̂n = 0 . (307)

Since t(z) = :T (z)1̃(z): with T (z) = :∂θ+(z)∂θ−(z):, we have to check the mode expansion of T (z). Taking
the derivative of (297) with respect to z, we see that the logarithm and the ξ modes vanish. Thus, taking
the normal ordered product :T (z)1̃(z): and expanding it by modes yields the same structure as in (300).
Eventually, some of the modes which vanished for 1̃ may not vanish for t(z), i. e. in general the l̂n may
differ from zero, where l̂n = ln,2 in the notation of (291).

A.3. Operator product expansions

A.3.1. The bosonic free field vertex operator construction

Ansatz For the fields involved in the OPEs, we take the following ansatz:

T (z) = −1

2
:∂φ(z)∂φ(z): + i

√
2α0:∂

2φ(z): , (308)1̃(z) = λφ(z)
exp

�
i
√

2aφ(z)
�

i
√

2α0

, (309)1 = exp(i
√

2aφ) in a correlator , (310)

t(z) = : λφ(z)
exp

�
i
√

2aφ(z)
�

i
√

2α0

T (z) : . (311)

In contrary to other papers, i.e. [41], we will give terms up to (z − w)−1 and log(z − w) · (z − w)0 (which
is still divergent for z → w), respectively, while

lim
z→w

log(z − w)(z − w) = lim
z→w

log(z − w)
1

(z−w)

= lim
z→w

1
(z−w)

− 1
(z−w)

2 = lim
z→w

−(z − w) = 0

is non divergent and will therefore be the first order to be omitted.

Additionally, as already stated in the section about vertex operators, the identity and its logarithmic
partner field, 1 and 1̃ are both proportional to exp(i

√
2aφ(z)) and thus the two have weights corresponding
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to the two roots of h(1̃) = h(1) = a2 − 2aα0 = 0, i.e. a(1) = 0 and a(1̃) = 2α0. However, in a correlation
function, they can be shifted by taking advantage of screening charges as explained in the first chapter.

How the wick theorem applies to vertex operators can be found in [14]:

A(z)eB(w) = A(z)B(w) eB(w) ,

and:

eA(z)eB(w) = eA(z)B(w) : eA(z)eB(w) : .

The usual OPE - T (z)T (w)T (z)T (w)T (z)T (w) The ordinary OPE between the stress energy tensor and itself is simple
and that of the ordinary free boson in a CFT with background charge α0:

T (z)T (w) ∼ (−1

2
:∂φ(z)∂φ(z): + i

√
2α0:∂

2φ(z):)(−1

2
:∂φ(w)∂φ(w): + i

√
2α0:∂

2φ(w):)

∼ 1

4

�
2(∂φ(z)∂φ(w))2 + 4(∂φ(z)∂φ(w)):∂φ(z)∂φ(w):

�
− 2α2

0(∂
2φ(z)∂2φ(w))

−i
√

2α0

�
(∂φ(z)∂2φ(w)):∂φ(z): + (∂2φ(z)∂φ(w)):∂φ(w):

�
∼

1−24α2
0

2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
. (312)

The new OPE part I - T (z)t(w)T (z)t(w)T (z)t(w) - auxiliary calculations For the mixed OPE we have to do some
auxiliary calculations since we apply the wick theorem on the two parts of t(w), i.e. 1̃(w) and T (w). This
is easier to calculate since we can use some of the results from above. Thus we have

T (z)1̃(w) ∼ (T (z)φ(w))λ
exp

�
i
√

2aφ(w)
�

i
√

2α0

+

 
T (z)λ

exp
�
i
√

2aφ(w)
�

i
√

2α0

!
φ(w) , (313)

with

T (z)φ(w) ∼ −1

2
2

−1

z − w
∂φ(z) +

i
√

2α0

(z − w)2
=

i
√

2α0

(z − w)2
+

1

z − w
∂φ(w) , (314)

and

T (z)λ
exp

�
i
√

2aφ(w)
�

i
√

2α0

∼ −1

2
2∂φ(z) ∂φ(z)

eia
√

2φ(w)

i
√

2α0

−1

2
(∂φ(z)φ(w))2λ
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i
√

2aφ(w)
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i
√

2α0

+ i
√

2α0 ∂2φ(z)
eia

√
2φ(w)

i
√

2α0

∼ ia
√

2

z − w
∂φ(z)λ

exp
�
i
√

2aφ(w)
�

i
√

2α0

+
a2

(z − w)2
λ

exp
�
i
√

2aφ(w)
�

i
√

2α0

− 2α0a

(z − w)2
λ

exp
�
i
√

2aφ(w)
�

i
√

2α0

.

(315)

Additionally, we get the second part of the OPE:

T (z)1̃(w) ∼ (T (z)φ(w))λ
exp

�
i
√

2aφ(w)
�

i
√

2α0

+

 
T (z)λ

exp
�
i
√

2aφ(w)
�

i
√

2α0

!
φ(w)

∼ ∂1̃(w)

z − w
+

h(a)

(z − w)2
1̃(w) +

λ1(w)

(z − w)2

∼ ∂1̃(w)

z − w
+

λ1(w)

(z − w)2
. (316)
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The new OPE part I - T (z)t(w)T (z)t(w)T (z)t(w) With the help of the calculations above we can construct the OPE
between the energy stress tensor and its logarithmic partner field:

T (z)t(w) ∼ (T (z)T (w)) 1̃(w) +
�
T (z)1̃(w)

�
T (w)

∼
 

1−24α2
0

2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

! 1̃(w) +

�
∂1̃(w)

z − w
+

h(a)

(z − w)2
1̃(w) +

λ1(w)

(z − w)2

�
T (w)

∼
c
2

(z − w)4
+

2t(w) + λT (w)

(z − w)2
+

∂t(w)

z − w
. (317)

Remark: This result can only be obtained within a correlation function since the vertex operator for the
identity, 1′, does only behave like the identity but is strictly another field. We can not obtain the same
coefficients as in the theoretical calculations since we have three h = 0 fields - 1, 1̃ and exp(i

√
22α0) with

the second root of h(a) = 0 as weight. Thus the metric changes and some multiplicities change. But in
principle the OPEs should be of the same form.

In the following it will be interesting to know the form of the reversed OPE. Thus we will give the
calculations and the result here:1̃(z)T (w) ∼ (φ(z)T (w))λ

exp
�
i
√

2aφ(z)
�

i
√

2α0

+

 
λ

exp
�
i
√

2aφ(z)
�

i
√

2α0

T (w)

!
φ(z) , (318)

wherein

φ(z)T (w) ∼ −1

2
2

1

(z − w)
∂φ(w) +

i
√

2α0

(z − w)2
= −∂φ(w)

z − w
+

i
√

2α0

(z − w)2
, (319)

and

λ
exp

�
i
√

2aφ(z)
�

i
√

2α0

T (w) ∼
�
− ia

√
2

z − w
∂φ(w) +

h(a)

(z − w)2

�
λ

exp
�
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√

2aφ(z)
�

i
√

2α0

. (320)

Thus we have for the complete reversed OPE1̃(z)T (w) ∼ (φ(z)T (w))λ
exp

�
i
√

2aφ(z)
�

i
√

2α0

+

 
λ

exp
�
i
√

2aφ(z)
�

i
√

2α0

T (w)

!
φ(z)

∼ λ
exp

�
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√

2aφ(z)
�
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√

2α0

�
−∂φ(w)

z − w
+

i
√

2α0

(z − w)2
− ia

√
2

z − w
∂φ(w)φ(w)

�
∼ − ∂1̃

z − w
+

λ1
(z − w)2

. (321)

The new OPE part II - t(z)t(w)t(z)t(w)t(z)t(w) - auxiliary calculations To calculate the OPE of two logarithmic
partner fields of the stress energy tensor we will try the ansatz

t(z)t(w) = :1̃(z)T (z)::1̃(w)T (w):

∼ :(1̃(z)1̃(w))(T (z)T (w)): + :(1̃(z)T (w))(T (z)1̃(w)):

+:(1̃(z)1̃(w)):T (z)T (w):: + :(T (z)T (w)):1̃(z)1̃(w)::

+:(1̃(z)T (w)):T (z)1̃(w):: + :(T (z)1̃(w)):1̃(z)T (w):: . (322)

Since some of the parts have already been calculated before, we will only give the calculations for the new
ones here. We will not state the terms up to the highest order needed for the OPE of the partner of the
stress energy tensor with itself but leave it up to the reader to expand the terms on the rhs of the OPE
depending on z around w.
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• 1̃(z)1̃(w)
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2
log(z − w)(z − w)2∂21̃(w) + . . .

�
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(323)

Hereby the conformal weight of exp(i2a
√

2φ(w)) is exactly h(2a) = 4a2 − 2(2a)α0 = 2a2 to fit the

dimensions of the prefactor (z − w)2a2

.

•

T (z)T (w) ∼
1−24α2

0
2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (z)

(z − w)
. (324)

•

T (z)1̃(w) ∼ ∂1̃(w)

z − w
+

λ1(w)

(z − w)2
+ λ

∂2φ(z)

i
√

2α0

. (325)

• 1̃(z)T (w) ∼ − ∂1̃
z − w

+
λ1

(z − w)2
. (326)

Now we have all the components we need to calculate the terms of the full OPE:

• Since the charge of a vertex operator is always real, we may assume that a2 > 0. Thus we do not
have to pay attention to some terms any more since they are regular due to this condition:

lim
z→w

log(z − w)(z − w)2a2

= lim
z→w

1
z−w

−2a2

(z−w)2a2+1

= lim
z→w

−2a2(z − w)2a2

= 0 . (327)

Of course, a 6= 0 since a = 0 is the identity.

78



�1̃(z)1̃(w)
�
(T (z)T (w))

∼ λ2

�
4 log2(z − w) +

log(z − w)

2α2
0

� 1−24α2
0

2

(z − w)4

+λ2 log(z − w)

1−24α2
0

2

(z − w)4−2a2

exp(i2a
√

2φ(w))

2α2
0

24i<4−2a2X
i=0

(z − w)i

i!

�
ia
√

2∂φ(z) + ∂z

�i

35������
z=w

−λ2
1−24α2

0
2

(z − w)4−2a2

exp(i2a
√

2φ(w))

2α2
0

24i<4−2a2X
i=0

(z − w)i

i!

�
ia
√

2∂φ(z) + ∂z

�i

35 :φ(z)φ(w):

������
z=w

− log(z − w)

1−24α2
0

2

(z − w)4

3X
i=0

(z − w)i∂i1̃(w) − 2λ log(z − w)∂[∂1̃(w)T (w)]

+λ2

exp(i2a
√

2φ(w))

α2
0

(log(z − w)T (w) − 2T (w):φ(w)φ(w):)

(z − w)2−2a2

+λ2
∂
h

exp(i2a
√

2φ(w))

α2
0

(log(z − w)T (w) − 2T (w):φ(w)φ(w):)
i

2(z − w)1−2a2

+
( λ2

α2
0

log(z − w) + 8λ2 log2(z − w))T (w) − 8λ log(z − w)t(w)

(z − w)2

+
( λ2

α2
0

log(z − w) + 8λ2 log2(z − w))∂T (w) − 8λ log(z − w)∂t(w)

2(z − w)
. (328)

•
(1̃(z)T (w))(T (z)1̃(w))

∼ λ2

(z − w)4
+

1

(z − w)2

�
−∂1̃(w)∂1̃(w) − 2λ2∂φ(w)∂φ(w) +

�
λ2

i
√

2α0

+ λia
√

21̃(w)

�
∂2φ(w)

�
+

1

(z − w)

�
∂1̃(w)

�
−2λ∂φ(w)∂φ(w)−

�
λ

i
√

2α0

+ ia
√

21̃(w)

�
∂2φ(w)

�
+

�
λ2

2i
√

2α0

+
λia

√
2

2
1̃(w)

�
∂3φ(w) − λ2∂φ(w)∂2φ(w)

�
. (329)

•
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These terms are uninteresting for comparison with the previous calculations, since divergences pro-
portional to log(z − w) have been neglected in the literature before.
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Obviously, the two last parts of t(z)t(w) can be added up to

(1̃(z)T (w)):T (z)1̃(w): + (T (z)1̃(w)):1̃(z)T (w): =
2λt(w)

(z − w)2
+

λ∂t(w)

(z − w)
. (334)

The new OPE part II - t(z)t(w)t(z)t(w)t(z)t(w) - simplified We will not state the terms added up for the full OPE
but just a simpler version to keep track of the most important terms. Thus we consider the assumption
2a2 > 4, i.e. a >

√
2 to let the terms of order (z − w)a vanish. Thus we choose the ansatz α0 > 1√

2
.

Additionally we leave out the log(z − w) poles. Note that this ansatz is not valid for c = 0 but e.g. for
c = −24.
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A.3.2. The c = −2c = −2c = −2 augmented minimal model

Now we will take a concrete example for LCFT OPEs, namely c = −2 which has a fermionic representation
with

θ± = θ±
0 log(z) + ξ± +

X
n6=0

θ±
n z−n , (336)

obeying

{θ±
n , θ∓

m} =
1

n
δm+n,0 , (337)

{ξ±, θ∓
0 } = ±1 , (338)

with all other anticommutators vanishing. The contraction rules follow from

θ+(z)θ−(w) = − log(z − w) , (339)

which implies

θ−(z)θ+(w) = − θ+(w)θ−(z)

= −(− log(w − z))

= log(z − w) . (340)

Since the θ± are fermionic, the OPEs θ+(z)θ+(w) and θ−(z)θ−(w) respectively or their descendants are
completely regular, i.e. θ±(z)θ±(w)0̃.

Ansatz

T (z) = :∂θ+(z)∂θ−(z): ,1̃(z) = −:θ+(z)θ−(z): ,

t(z) = :T (z)1̃(z): . (341)

The usual OPE - T (z)T (w)T (z)T (w)T (z)T (w)

T (z)T (w) = (:∂θ+(z)∂θ−(z):)(:∂θ+(w)∂θ−(w):)
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�
. (342)

Unfortunately, the last term can not be identified as a linear combination made up of descendants of T (w)
or 1̃(w) only.

The new OPE - t(z)t(w)t(z)t(w)t(z)t(w) - auxiliary calculations To calculate the OPE of t(z)t(w) we take the same
ansatz as before.

t(z)t(w) = :1̃(z)T (z)::1̃(w)T (w):

∼ (1̃(z)1̃(w))(T (z)T (w)) + (1̃(z)T (w))(T (z)1̃(w))

+(1̃(z)1̃(w)):T (z)T (w): + (T (z)T (w)):1̃(z)1̃(w):

+(1̃(z)T (w)):T (z)1̃(w): + (T (z)1̃(w)):1̃(z)T (w): . (343)

In the following we will calculate again the factors of the six summands for this ansatz.
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• 1̃(z)1̃(w)

= (:θ+(z)θ−(z):)(:θ+(w)θ−(w):)

∼ θ+(z)θ−(w) θ−(z)θ+(w) + θ+(z)θ−(w) :θ−(z)θ+(w): + θ−(z)θ+(w) :θ+(z)θ−(w):
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• 1̃(z)T (w)
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•

T (z)T (w) =
−1

(z − w)4
+

2T (w)

(z − w)2
+

∂T (z)

(z − w)
. (347)

Now we put the factors together yielding the complete OPE.
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The new OPE - t(z)t(w)t(z)t(w)t(z)t(w) After making use of the anticommutation relations among the θ± which cause
some terms to vanish, we can state the final result for the OPE in the case of c = −2:
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A.3.3. Calculations for the general tensorized model

We take the ansatz

t(0)(z)t(0)(w) = t(1)(z)t(1)(w) +
�
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Note that there are no contractions between the two parts; the tensorized fields factorize into their respec-
tive OPEs.
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After inserting the OPEs (220) and sorting the terms by order of (z − w) we get
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A.4. Percolation as a tensor model

A.4.1. The fourfold Ising model

Tensorizing two Ising models with each other yields nine possible fields whose weights are given by

((r1, s1), (r2, s2)) = (0, 0), (0,
1

2
), (

1

2
, 0), (

1

2
,
1

2
), (

1

16
,

1

16
), (0,
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16
), (

1

16
, 0), (

1

2
,

1

16
), (

1

16
,
1

2
). (352)

However, we can choose the smallest subset which already closes under fusion containing only

((r1, s1), (r2, s2)) = (0, 0), (0,
1

2
), (

1

2
, 0), (

1

2
,
1

2
), (

1

16
,

1

16
) (353)

For this example, we will state the complete fusion products:

(0, 0) × (X, Y ) = (X, Y ) (354)

(0,
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2
) × (0,
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2
) = (0, 0) (355)

(0,
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2
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,
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2
) (356)

(0,
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2
) × (

1
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,
1

2
) = (
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2
, 0) (357)

(0,
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2
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16
,

1

16
) = (
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16
,

1

16
) (358)

(
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2
, 0) × (
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2
, 0) = (0, 0) (359)

(
1

2
, 0) × (

1

2
,
1

2
) = (0,

1

2
) (360)

(
1

2
, 0) × (

1

16
,

1

16
) = (

1

16
,

1

16
) (361)

(
1

2
,
1

2
) × (

1

2
,
1

2
) = (0, 0) (362)

(
1

2
,
1

2
) × (

1
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,

1

16
) = (

1

16
,

1

16
) (363)

(
1

16
,

1

16
) × (

1

16
,

1

16
) = (0 +

1

2
, 0 +

1

2
) (364)

= (0, 0) + (0,
1

2
) + (

1

2
, 0) + (

1

2
,
1

2
). (365)

Following the same procedure, we try to construct a c = 2 model out the tensor product of two dublicated
smallest Ising models. The smallest possible setup can be constructed by symmetrizing over all fields of
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the same weight, i.e. 1 = (0, 0, 0, 0) (366)

E1 = ε1 + ε2 + ε3 + ε4 (367)

E2 = ε12 + ε23 + ε34 + ε14 + ε24 + ε23 (368)

E3 = ε123 + ε234 + ε134 + ε124 (369)

E = ε1234 (370)

S = σ1234 (371)

in an obvious notation for the tensor product. Its closure under fusion can be shown by explicit calculation.
We will give only half of the table since the fusion product is symmetric:

× 1 E1 E2 E3 E S1 1 E1 E2 E3 E S
E1 − E2 + 1 2E3 + 2E1 E + 3E2 E3 4S
E2 − − E + 4E2 + 1 3E2 + 3E1 E2 6S
E3 − − − E1 E2 + 1 4S
E − − − − 1 S
S − − − − − 1+ E1 + E2 + E3 + E

(372)

A.4.2. Percolation as a tensor model

Starting with the assumption that percolation should be a c = 0 theory with critical scaling dimensions
h = 1

8
and h = 5

8
we will try a tensor model as described above:

c2,1 + 4 · c4,3 = −2 + 4 · 1

2
= 0. (373)

Taking all fields of the smallest fourfold Ising model and the c = −2 theory, we see that we can again omit
some fields and thus the smallest ansatz for c = 0 contains

• two h = 0 fields: (R1,1),

• ten fields of which any two partners having a weight of h = 1
2
, 1, 3

2
, 2, 1

4
,respectively: (R1, E1),

(R1, E2), (R1, E3), (R1, E), (R1, S),

• one field with h = 1
8

- (µ, S),

• one field with h = 5
8

- (ν, S).

Remark: the last two fields exhibit exactly the two critical scaling exponents as weights that are believed
to come up in a percolation model.

It is obvious that the above fields close under fusion since R1 × R1 ∝ R1 and EX × EY ∝ EY oder R1,
µ oder ν ×R1 ∝ µ + ν and S × EX ∝ S as well as µ × ν ∝ R1 and S × S ∝ R1 + E + E1 + E2 + E3.

A.5. Nullvectors in c = 0c = 0c = 0

Since we do not know anything about the commutators of the lm-modes alone, we will explain only the
necessary conditions for µ; whether the null states on level three really exist or not remains to be shown.
For the level two null state this question is trivial, since the action of l1 already annihilates the state as
mentioned before, and thus we have l21|χ(2)

(h,c)〉 = 0, anyway.
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A.5.1. The level two null state in c = 0c = 0c = 0

As mentioned before, the level two null state is given by

|χ(2)
(h,c)〉 =

�
L−2 − 3

2(2h + 1)
L2

−1

�
|h〉 . (374)

Letting l2 act on this state, we have to compute two commutators - [l2, L−2] and [l2, L
2
−1]. Since the action

of positive modes on |h〉 vanishes, we know that in this case any expression equals zero in which a negative
mode stands on the right. This way, the commutators can easily be simplified.

l2L−2|h〉 = [l2, L−2]|h〉
= (4l0 + h + µ) |h〉 (375)

l2L
2
−1 = [l2, L

2
−1]|h〉

= [ [l2, L−1], L−1] |h〉
= 6l0|h〉 (376)

The null state condition now translates into�
4l0 + µ + h − 9

2h + 1
l0

�
|h〉 = 0 (377)

which means that for l0|h〉 = h|h〉 we have µ = 9h
2h+1

− 5h which is µh=0 = 0 and µh=5/8 = −5/8 and for
l0|h〉 = 0 we have µ = −h which is µh=0 = 0 and µh=5/8 = −5/8. Thus, for this computation the choice
of the action of the l0 modes does not make any difference.

A.5.2. The level three null state in c = 0c = 0c = 0

Now we will compute the conditions for level three analogously. The level two null state is given by

|χ(3)

(h,c)
〉 =

�
L−3 − 2(h + 1)L−2L−1 + h(h + 1)L3

−1

�
|h〉 . (378)

With the same argumentation as above, we can now simplify the action of l3 on this state.

l3L−3|h〉 = [l3, L−3]|h〉
= (6l0 + 2h + 4µ) |h〉 (379)

l2L−2L−1 = [l2, L−2L−1]|h〉
= [ [l3, L−2], L−1] |h〉
= (10l0 + 2h) |h〉 (380)

l3L
3
−1 = [l3, L

3
−1]|h〉

= [ [ [l3, L−1], L−1, L−1]] |h〉
= 24l0|h〉 (381)

The null state condition now translates into

(24l0 − 2(h + 1)(10l0 + 2h) + h(h + 1)(6l0 + 2h + 4µ)) |h〉 = 0 (382)

which means that for l0|h〉 = h|h〉 we have µ = 6h
h+1

− 2h which is µh=2 = 0 and µh=1/3 = 5/6 and for
l0|h〉 = 0 we have µ = 1− h/2 which is µh=2 = 0 and µh=1/3 = 5/6. Thus, again, the results are the same
for both choices of l0.
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