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It is an open question whether or not it is possible to generalize the definition of a
vertex operator algebra to treat logarithmic conformal field theory already at the vacuum
sector. With this task in mind, universal bracket relations for logarithmic mode algebras
are given.
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Introduction. Algebraically, the most distinguishing property of logarithmic con-
formal field theory are indecomposable structures with respect to the action of
(Virasoro) modes, while the attribute “logarithmic” derives from the appearance
of logarithmic divergencies in certain correlation functions in such theories. Phys-
ically, it seems to be particularly interesting for disordered systems, but there is
also a number of other physical models with indecomposable, logarithmic features,
see e.g. [1, 2] and references therein.

While the algebraic aspects of “ordinary” conformal field theories, and in par-
ticular rational ones, are potently and elegantly described by the theory of vertex
operator algebras in a rigorous manner (see e.g. [3, 4, 5]), several questions remain
unanswered as to the logarithmic generalization so far. Expanding on Milas’ earlier
work [6], Huang, Lepowsky and Zhang were able to treat logarithmic conformal field
theory in the language of vertex operator algebras in [7]. Their approach introduces
characteristic logarithmic features through the notions of generalized modules and
logarithmic intertwining operators, while the definition of the fundamental struc-
ture, the underlying vertex operator algebra itself, is left unchanged. This way, they
could furthermore broaden their P(z)-tensor product theory to incorporate such
generalized structures, which makes it possible to discuss nonmeromorphic oper-
ator product expansion rigorously, among many other things. Two recent works
which investigate properties of infinite families of logarithmic conformal field theo-
ries from such a vertex algebraic perspective are [8] and [9]. Such less general but
more concrete studies give further credibility to the claim that logarithmic confor-
mal field theory may be described successfully by vertex operator algebra theory
on the level of modules.

On the other hand, all known logarithmic conformal models share the property
that the vacuum vector €2 has at least one logarithmic partner, i.e. ) is an element
of a nontrivial Jordan cell with respect to the action of the Virasoro mode Lg.
By the operator-state-correspondence, there is also a logarithmic partner to the
identity operator which typically has a logarithmic dependence on its variables.
Since the vacuum vector is part of the structure of a vertex operator algebra but
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not necessarily of its modules, the question naturally arises whether it is possible to
modify or generalize the definition of a vertex operator algebra to treat logarithmic
conformal field theory already at this fundamental level.

In this note, I attempt to go one step towards an answer to this question by
considering the algebras of logarithmic modes. For concreteness, the logarithmic
00~ -system is discussed, and in particular the operator product expansions of the
logarithmic partner Q(z) to the identity field and the Virasoro field as well as of
ﬁ(z) and itself are derived. As these operator product expansions are believed to
be valid in any logarithmic conformal field theory, the subsequent discussion of
logarithmic mode algebras should be equally universal.

Acknowledgments: 1 thank Michael Flohr for motivating me to investigate algebraic
aspects of logarithmic conformal field theory and for many discussions. I am also
grateful to Johannes Meisig for interesting discussions and comments.

The 10 -system. The probably most intensively studied logarithmic confor-
mal field theory is the one with central charge ¢ = —2. While the triplet algebra
W(2,3%3) at ¢ = —2 involves three additional primary generating fields We(x),
there is also a pure Virasoro model with indecomposable but reducible structure. It
has a concrete realization in terms of the 70~ -ghost system originally introduced
by Zamolodchikov.

The 070~ -system is defined by two fermionic fields 6% (z) and 0~ (z) whose mode
expansions are 0% (z) = 0 log z + £+ + Dm0 0+ 2~™, and all modes anti-commute

except for the following cases: {¢F,0f} = +1, {0,5,6,,} = L 6,100 for all m # 0.
The modes ¢* and 6 generate a Fock space by the free action on the vacuum €,
subject to the relations above and the condition that 6;-Q = 0 for all m € N, and
the normal-ordering is given by : 6,0, := +60,50. for m < mn, : 16, := —0, 6}
for m > n, and : 0L 1= —¢F0E = — : ¢F9E . The conformal symmetry is
encoded in the 70~ -system such that the energy momentum operator is realized
as T'(z) = : (061 (2))(00~ (2)) :. Indeed, the above relations can be used to express

the modes of T'(z) = Y, .7 Limnz~™% in terms of the modes of 6%*(z),

m(0y 0, + 0,,05) + > ucq alm —a)b)_ 05 form #0,

050y — D pep @’ : 07,07 : form=0,

and these modes satisfy the Virasoro algebra with central charge ¢ = —2.
In addition to the energy momentum operator, a field ﬁ(z) of generalized weight
0 can be obtained by the fields 8% (z) as Q(z) = Y omeZ 2aeN Qm,az_m(log 2)* =
—: 07 (2)0~(2) :, and its modes can be expressed in terms of the modes of 6% (2)

by the relations

- =0, =058+ om of 07 form#0,
Qm,O = (23,)
—ETET =0 07,0, form =0,
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046 — 070 form#0,
Q1 = (2b)
—&t0; + €705 form =0,

Qm72 = —(5m709396 . (2C)

The vector = Q(2)Q],—o associated to the field Q(z) spans a Jordan cell of rank
2 with respect to the operator Ly together with the vacuum Q: LyQ = Q.

Commutation relations involving one logarithmic mode. With the concrete
realization of a logarithmic conformal field theory given by the 70 -system at
hand, the explicit expressions in terms of the fields #*(z) can be used to study
properties of the logarithmic fields Q(z).

As a first example, one can perform several calculations building on the anti-
commutation relations for the §*- and ¢&-modes and the expressions (1), (2) to
obtain all commutation relations involving one Virasoro mode L,, and one loga-
rithmic mode Q,, ,. This yields

|:Lm7 §Vzn,a] = _(m + n)ﬁm-i-n,a + (a + 1)§m+n,a+l + (m + 1)6m+n,—16a,0 . (3)

The same result can also be more elegantly obtained from a naively generalized ver-
tex operator algebra Jacobi identity, i.e. from xglé(%)Y(w, 21)Y (Q, z2,log xa)—
malé(%)Y(ﬁ,xgﬂog 22)Y (w, 1) = x;%(%)Y(Y(w,xo)ﬁxg,loga:g) where
w denotes the conformal vector. On the other hand, a consistent generalized Jacobi
identity involving two logarithmic vertex operators is not available.

The operator product expansion ﬁ(z)ﬁ(w) In ordinary conformal field
theory, the commutation relations between modes of two fields are equivalent to the
operator product expansion of the two fields, so one may try to obtain information
about the bracket relations between the (2-modes by studying the operator product
expansion of (z)Q(w). This product can be computed with the help of a variant of
Wick’s theorem. If the normal-ordered product of two arbitrary logarithmic fields
f(2) =2 enaen #7108 2) frna and g(2) = 32, ey e 2~ " (log 2)%g,,.p is defined
as : f(z)g(w) : = f(2)4+9(w) + g(w) f(z)- with

Z)+:ZZ fm0+ Z Z'Z Ing fm,aa

m<0 m<—1a>0
= E z me"" § § z Ing f’m,a;
m>0 m>—1a>0

Wick’s theorem as stated in [10] can be generalized to the logarithmic case and

subsequently applied to the present case of interest to compute the operator product
expansion of Q(2)Q(w) =: 07 (2)07(z) :: 61 (w)0~ (w) :. This yields

Q(2)Q(w) = —(log(z — w))? — 2log(z — w)Q(w) + (terms regular in (z —w)) . (4)

Bracket relations from the operator product expansion. The way commu-
tation relations for modes are often obtained in conformal field theory is to compute
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contour integrals of the corresponding operator product expansion, but this method
can certainly not be directly applied to the logarithmic case because the contour
integral of a logarithm is simply not defined. Given two logarithmic fields, in order
to infer the commutators of their modes from their operator product expansion
without having to compute contour integrals or (formal) residues, one can compare
coefficients of monomials of all the variables on both sides of the operator prod-
uct expansion. To do this one has to consider the non-normal-ordered part of the
product Y (u,z1)Y (v,22) = Zf\i‘dﬁl(ml — 29) " Y (wiv, m2)+ 2 Y(u, 7)Y (v, 22)
of the two fields on one side of the equation, while on the other side the singular
part of the expansion in the difference of the variables has to be considered, see
e.g. [4, 11] for the non-logarithmic case. This method in particular circumvents the
problem of having to deal with ill-defined residues of logarithms.

Using this method one can easily extract all commutation relations from op-
erator product expansions of fields in an arbitrary meromorphic conformal field
theory. But more interesting from the present point of view is the case of the oper-
ator product expansion T'(z)Q2(w) which involves one ordinary quantum field and
one logarithmic field. This operator product expansion can be computed using the
6760~ -system, but it can also be inferred using the general relation Lo = 2, and it
is given by T(2)Q(w) ~ (E=mL w)z + &= w)BQ( w). Proceeding as described above one
arrives at exactly the same result as the one obtained in (3), which gives further
credibility to the method used here and provides a third independent possibility to
compute the commutators [L.,, {1, 3]. Nevertheless, it should be stressed that this
method is only assumed to work also in the logarithmic case where it cannot be
obtained from first principles so far due to the lack of a consistent definition of a
Jordan vertex operator algebra.

After this reassuring example now the case of Q(Z)Q(w) is addressed which is
given by Q(2)Q(w) ~ — (log(z — w))? —2log(z — w)Q(w). Proceeding as before, the
left-hand side can be written as

Q(2)Q(w) = :+ Z Z Z 2" ™w ™" (log w)® {§m70,§n71)}

m>1n€ZbeN

+ Z Z Z Z 2™ " (log 2)?(log w)® [ﬁm,a,ﬁn,b} . (5

m>0n€Z a>0beN

while the relevant part — (log(z — w))? — 2log(z — w)(w) of the right-hand side
can be expanded in z, w, log z and logw as

m—1
7m m
logz m+1 longzz
m>1 m>2 1=1
~ B 9 ~ o
— Z Z 20, pw ™" log z(log w)b + Z Z Z EQmﬂl’bz Maw ”’(logw)b )
neZ beN m>1neZ beN

(6)

Comparing (5) and (6) may at first suggest the following bracket:
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~ ~ ? 2
[Qm,ay Qn,b:| = _6a,25b,05m706n,0 + 6a,16b706m+n70(1 - 6171,0)%
m—1 9 " 9 .
- 5@ 6 6m n 1- 6m . 6@ 67n 2Qn 5@ 7Qm n,0 - 7
005,00m+n.,0( 1) ; i 10m, 0282, b + 0 Smatnb (7)

Here in the third term on the right-hand side the factor (1 —4d,,,1) can be discarded

if the convention is imposed that Zi:k s; = 0 for all | < k, i.e. one only counts in
the positive direction. This convention is employed in the following.

According to the above reasoning, the relation (7) can only be possibly true for
(m,a) € (Z4+ x {0}) U (IN x Z,). But the right-hand side of (7) does not have the
same symmetry as the left-hand side: a permutation of the kind (m,a) < (n,b)
should have the same effect as a mere multiplication by —1. Obviously this is not
the case, and so one may expect that an expansion in the domain |w| > |z| will lead
to additional terms such that the full bracket has the correct symmetry. This would
be in contrast to the cases considered before, where “half of” the commutator was
actually already the “full” commutator.

But instead of finding the correct expansion for |w| > |z|, one may also propose
to argue in the following way: only one expansion (for |z| > |w]|) has to be carried
out as this already gives all the crucial information on the bracket (as in the case of
meromorphic fields and T'(z)Q(w)). The missing terms are simply added such that
antisymmetry is warranted. This suggests that the bracket should be

- 2
|:Qm,aa Qn,b:| = (5a705b,2 - 6(L,26b,0) 6’!7L,O(Sn,0+(5a,15b,0 + 6a,05b,1) (1_6’m,,0)5m+n,0E

m—1 —m—1
1 1 2 ~ ~
- ( E -+ § > 60,,061),05m+n,0* - 50,,16771,,029n,b + 5b,16n,029m,a
i=1 t i=1 v m

2 ~ 2~
+ 60,,0(1 - 6m70)%9m+n,b - 51),0(1 - 6n,0)ﬁﬂm+n,a ) (8)

where only the minimal number of new terms was added to the relation (7) to secure
antisymmetry; additional terms are not to be expected “because of symmetry”.

This makes (8) the best proposal for the bracket of two logarithmic Q-modes so
far. As the operator product expansion (4) is believed to be correct in all logarithmic
conformal theories (and not only in the 610~ -system), this relation would also apply
universally. On the other hand, the reasoning leading to the anti-symmetrized form
(8) seems to be imperfect, and a more thorough argument would be welcome.

Final remarks. It is interesting to note that the relation (8) cannot be the
bracket for a Lie algebra spanned by the modes ,, ,. Indeed, explicitly calculat-
ing [[Ql,a; Qm,b]; Qn,c} + [[Qm,bv Qn,c]a Ql.,a} + [[Qn,ca Ql,a}» Qm,b]v one ﬁnds that thlS
satisfies the ordinary Lie algebra Jacobi identity for arbitrary I,m,n € Z only if
the logarithmic indices a, b, ¢ are positive integers. An analogous statement is true

for the double-bracket [[L;, Q, 5], Qn,c] and its cyclic permutations, using in addi-

tion the commutation relation (3) for [L;, Qp,p]. On the other hand, the identity
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([Lin, Ln), §~2l7a] +[[Ln, ﬁl,a],Lm] + [[Q.a, L), Ln] = 0 is satisfied for all {,m,n € Z
and a € N. The failure of the bracket (8) to satisfy the Lie algebra Jacobi identity
may not be reason enough for it to be disqualified, as not much is known on the
algebras of modes in logarithmic conformal field theory. In particular, [L,,, Q4] is

really a commutator while the object [, o, 2y 5] computed here is a more abstract
bracket. At the present stage there seems to be no necessity for the modes to span
a Lie algebra, and the relation between the operator product expansion and com-
mutation relations of modes in logarithmic theories would differ from the ordinary
case. In the general setting of logarithmic conformal field theory it might simply
not be true that all modes are elements of a Lie algebra as in the case of ordinary
vertex operator algebras — if at all it is possible to treat logarithmic conformal field
theory at the level of vertex operator algebras and not only their modules in the
first place; this remains an open question.
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