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Zusammenfassung

In dieser Diplomarbeit wurde das Verhalten von Geistsystemen als zweidi-
mensionalen konformen Feldtheorien unter additiven Modifikationen des Energie-
Impuls-Tensors untersucht. Die Moden dieser Modifikationsfelder sollen in der
Einhiillenden der Geistmodenalgebra enthalten sein. Diese Bedingung ist erfiill-
bar, wenn die Geistsysteme auf riemannschen Flidchen, dargestellt als verzweigte
Uberlagerungen der riemannschen Sphire, definiert werden. Der unmodifizierte
Energie-Impuls-Tensor agiert inkonsistent auf den Zustdnden: Aus seiner Akti-
on auf den Zustdanden lasst sich ein Widerspruch zur Assoziativitdt der zugrun-
degelegten Operator Produkt Algebra konstruieren. Im Gegensatz dazu weist der
(erweiterte) Zustandsraum des Z,,-getwisteten Geistsystems mit zentraler Ladung
¢ = —2 unter der Aktion des modifizierten Energie-Impuls-Tensors unabhingig
von der Ramifikationszahl n die gesuchten Jordanzellen vom Rang 2 auf.

Ahnliche Modifikationen fiir konformen Spin 1 > 1 sind méglich: Ein all-
gemeinerer Ansatz, der die oben genannte Modifikation fiir ¢ = -2 als Spezial-
fall enthilt, wurde gefunden. Konsistenzbedingungen fiir den Modeninhalt dieses
Ansatzes und der funktionalen Abhédngigkeit von anderen Parametern konnten
explizit angegeben werden. Fiir alle Modifikationsfelder, die ausschlieBlich aus
b-Moden konstruiert sind, wurde gezeigt, daf} Jordanzellen fiir Ly in allen fer-
mionischen Geistsystemen, auer denen zu ¢ = —2, ausgeschlossen sind. Nichts-
destotrotz existieren unzerlegbare Strukturen beziiglich der anderen Virasoro-
generatoren. So konnten auch quasiprimére Zustidnde konstruiert werden, deren
korrespondierende Felder inhomogene Ward-Identititen beziiglich des Translati-
onsoperators erfiillen miissen. Solche unzerlegbaren Strukturen wurden meines
Wissens bisher nicht beschrieben.
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Abstract

In this thesis, 1 examined the behaviour of ghost systems as two dimensional
conformal field theories under additive modifications of the energy-momentum
tensor. The corresponding modification fields are required to have modes in the
universal enveloping algebra of the algebra of the ghost modes. This condition
can be satisfied, if the ghost systems in consideration are defined on a Riemann
surface, represented as a ramified covering of the Riemann sphere. The unmodi-
fied energy-momentum tensor acts inconsistently on the space of states: Its action
on an (enlarged) space of states contradicts the associativity of the underlying op-
erator product algebra. Contrary to this, the modified energy-momentum tensor
exhibits the desired rank-2 Jordan cells on the space of states of a Z,, twisted
ghost system with central charge ¢ = —2.

Similar modifications of the energy-momentum tensor are possible for higher
spin A: I have found a more general ansatz containing the above-mentioned as a
special case. Consistency conditions on the mode content of this ansatz and on
the functional dependence on the other parameters are given explicitly. It could
be shown for all modifications which are required to be decomposed by b-modes
only that Jordan cells are not possible for fermionic ghost systems except the one
at c = —2. Nevertheless, indecomposable structures with respect to other Virasoro
generatorsdo exist. I have been able to construct quasi-primary states, which have
to satisfy inhomogeneous Ward identities with respect to the translation operator.
To my knowledge, such indecomposable structures have not been described in the
framework of logarithmic conformal field theory.
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I Introduction

Conformal field theory (CFT) in two dimensions has attracted a great deal of attention
from both mathematicians and physicists since the seminal paper by Belavin, Polyakov
and Zamolodchikov in 1984 [BPZ84] revealed that in principle all correlation functions
have a power series expansion with the so-called conformal blocks as coefficients.
They showed that a certain class of so-called minimal models comprises only finitely
many of those blocks. Each of these models is therefore determined completely by a
finite set of numbers and therefore is exactly solvable.

In conventional CFTs, the local coordinate dependence of correlators is restricted
to a formal power series. However, in many cases, logarithmic divergencies arise in
the context of conformal symmetry, e.g. in the fractional quantum Hall effect, percola-
tion, self-avoiding walks, two dimensional dense polymers, disorder, string theory and
AdS/CFT-correspondence, the abelian sandpile model, gravitational dressing and oth-
ers. This was first considered to be a problem, but these logarithmic CFTs (LCFTs)
helped to solve long standing puzzles not well-described by CFTs. In 1993 Gurarie
investigated the ¢ = —2 model and proved that it could not do without logarithmic
divergencies, highlighting the necessity for a generalisation of CFTs.

Different aspects of LCFTs had been observed as early as 1987 by Knizhnik in
[Kni87] and also by Saleur and Rozansky in [Sal92b], [Sal92a] and [RS93]. Saleur
and Rozansky noted indecomposable structures in e.g. a WZW model of the superex-
tension of GL(1,1). For a series of models, called ghost systems, Knizhnik showed
that insertions of so-called twist fields into correlators on the Riemann sphere are suf-
ficient to mimik any correlator on a Z,, symmetric Riemann surface in [Kni87]. Here,
the appearance of logarithms in a CFT was noticed for the first time. But it seems that
neither Knizhnik nor anybody else paid very much regard to this. Knizhnik blamed
the appearance of logarithms, in analogy to the free boson case, on a diverging radius
of compactification. Gurarie then published his paper [Gur93] about a special model
of this series, showing that the logarithms were an integral part of the model, if one
takes into account the twist fields. It received a boost of attention after [Flo94] and
[Flo96] were published. In the former, Flohr classified all rational conformal field
theories with effective central charge c.; = 1, including the non-unitary ones. He
found theories for which modular invariant expressions could not be obtained as bi-
linear combinations of the characters only, but for which additional functions had to
be introduced which lacked an interpretation as characters. These models contain the
¢ = —2 model and proved to be logarithmic. By now, LCFTs have become a part of
mathematical physics and an important tool in particle and condensed matter physics.
For reviews, see [FIR03]. There, an extensive list of references can be found as well.
Although the ghost systems are the first examples of CFTs with logarithmic behaviour,
they are still not completely understood. The analysis of Knizhnik suggested that only



irreducible representations exist. Gurarie, however, showed that indecomposable rep-
resentations are present. Furthermore, Knizhnik’s bosonisation formul® of the twist
fields fail to show the logarithmic divergencies which have been seen by Gurarie, if the
insertion points come close to each other.

In this thesis, I try to reconcile some of the statements of [Kni87] with results
of [Gur93]. In the second chapter, I review some facts about conformal field theory,
Riemann surfaces and ghost systems. Then, I give a rather detailed overview over Gu-
rarie’s and Knizhnik’s respective papers, and explain where they might have conflicting
implications. I indicate a way to circumvent this problem for ghosts in presence of Z,
twists, suggested by Fjelstad et al. in [FFH*02]. In chapter IIL.1, T suggest a deforma-
tion! ansatz to do the same for all Z,, twisted ¢ = —2 models, without using ‘foreign’
new modes. In fact, simple ghosts on n-sheeted coverings of the Riemann sphere have
been proven to allow for a natural and straightforward generalisation of the ansatz of
Fjelstad et al. Following that, I prove this ansatz to be applicable and derive constraints
on its parameters. Lastly, I calculate the action on the space of groundstates explicitly.
Naturally, it is interesting to ask what happens in the case of higher conformal spin
A. This is investigated in chapter IV, using a general ansatz containing the one of the
preceeding chapter. I derive constraints on the parameters and the properties of the
unknown modes. To be able to calculate the action on the groundstates explicitly, I
further restrict the ansatz for the unknown modes to a linear combination of known
modes. This turns out to be disadvantageous. In particular, in some cases L fails to
measure the actual conformal weight. Therefore, in chapter V, I investigate a quadrilin-
ear ansatz which proves to be well-defined and to lead to an indecomposable action on
the space of states. I also show that Jordan cells are ruled out for any additive deforma-
tion, built out of b-modes, for which the new Virasoro modes measure the conformal
weight correctly. From that result I infer that the logarithmic conformal Ward iden-
tities connected to the ‘standard Jordan cell’ cannot be valid in all cases. In chapter
VI, I discuss some possible implications of my results. I continue with a summary
and end with an outlook on further research opportunities. The appendix contains the
derivation of a deformation with adjustable lower nilpotence index.

IRefering to my investigations, I will use the terms ‘deformation’, ‘improvement’ and ‘modification’
interchangeably. Here, the term deformation is nof used in the sense of an OPA deformation, which will
be denoted explicitly.



II Background and Motivation

II.1 Some Facts and Notations
II.1.1 Conformal Field Theory

As a quantum field theory, a conformal field theory (CFT) is characterised by its space
of states and the set of all its correlation functions, or n-point- functions. In CFT, the
correlators of primary, i.e. conformally covariant, fields determine the set of all ob-
servable quantities. (As will be reviewed, this concept has to be generalised somewhat
in logarithmic conformal field theory.) By conformal invariance, this set can be recov-
ered the set of two-, three- and four-point-functionsi of primary fields. Furthermore
the shape of two- and three-point-functions is completely determined and four-point-
functions have to satisfy dramatic constraints. Associativity of the operator product
algebra (OPA) or, equivalently, crossing symmetry of the four-point-functions, imply a
set of consistency or ‘bootstrap’ equations. Although these are often too complex to be
solved, this is possible within the so-called minimal models. These models are exactly
solvable in this way.

A paedagogical overview of CFT is beyond the scope of this thesis. In the fol-
lowing, some features essential for the understanding of the rest of this thesis will be
explained exemplarily. I will give a description by equal time commutators. The OPA
approach to CFT is very useful in general, but it is not explicitly needed in this thesis.
In order to make this thesis more self-contained, we add some further comments to
the appendix. The reader unfamiliar with this topic might wish to consult [Sch96],
[Gab00], [GGOO], [Sch97], [DFMS97], [Gin88] for an elaborate introduction. Locally
scale invariant quantum field theories are called conformal field theories. A condition
for scale invariance is the tracelessness of the energy-momentum tensor. This condi-
tion is also sufficient to render the theory invariant under all coordinate transformations
7" — x*(z) which leave the metric tensor invariant up to a factor:

07" 077

8 G g = O

These transformations comprise, for obvious reasons, the conformal, i.e. angle-preserving,
group. The corresponding global symmetry algebra is isomorphic to so(p+1,g+1) for

d = p + g dimensional space with signature ((+1)?, (—1)”). Local conformal symmetry

in two dimensions implies an infinite number of conserved charges:

Q. = %%«SQ)T(Z)
i

with &(z) an arbitrary function having a Laurent expansion in some vicinity of the
origin, and 7'(z) being the energy-momentum tensor, i.e. the generator of conformal
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transformations of the metric. One can reconstruct the conserved charges from the
modes of the energy-momentum tensor, obtained by Laurent expansion

dz 1
n 27-[ n+1

T@ ~ T@ = Zan-" N

These modes satisfy the Virasoro algebra

c(qg+1
\[Lq’ Lm} = (C] - m)Lq+ﬁ + 5 3 6q+m,0 (1)
deWiEralgebra
[Lq, 6} =0 VgeZ ¢ central extension.

This is the central extension of the algebra of vector fields on the circle, Diff(S').
The central charge or central extension commutes (therefore the name) with all other
generators of the algebra, and therefore can be represented by a number c. The central
extension is an element of the second cohomology group of the de Witt algebra. Since
central extended representations can be used instead of projective ones, (which are
needed, because Hilbert spaces used in quantum mechanics are projective,) the two
cocycle represents an explicit scale in the space of states. In fact, the central charge
¢ implies that the energy-momentum tensor does not respond conformally covariantly
to transformations generated by it, and therefore ¢ introduces some soft breaking of
scale invariance. In string theory, the overall central charge has to vanish, because
of that. Because of (1), the energy-momentum, or stress-energy tensor is also called
Virasoro field. Often it is useful to compactify the theory in consideration on the torus.
Therefore, if necessary, a Wick rotation is performed first, to obtain a euclidean theory,

T,0 > T,,T_, T,=T=IO.

The following conformal transformation can then be used to work on the complex
plane and use complex analysis:

_ 27m'+

Sz=e¢ T —>z= e27r1"r,‘

This transformation maps infinite past to the origin and infinite future to the ‘radius at
infinity’. This is called radial quantisation. (These coordinates were used already in
the Laurent expansion of the energy-momentum tensor.) Tracelessness (77 = 0) and
conservation (8T, = 0) of the energy-momentum tensor imply the equations

T:=0 0T ;+0.T::=0 0.T:+0:T: =0,

from which follows
0 = azTZZ 0 = GZTZ:‘

<



This means that the only two independent components of the Virasoro field are holo-
morphic and anti-holomorphic fields, respectively. Therefore, the two Virasoro alge-
bras have to commute. The full symmetry is Wit @ ¥it or bigger, but it can always be
factorised into a holomorphic and an anti-holomorphic part. This is also the reason why
fields and derived quantities can be written in a factorised form, where the holomorphic
and the anti-holomorphic part are independent of each other, e.g. (T'(2)T (w)) o« ﬁ,
but <T(z)T(W)> = 0. After the full correlator is evaluated, nevertheless, a real cut has
to be taken by requiring a fixed relationship, e.g. z = Z. Like the stress-energy tensor,
all meromorphic fields ¢(z,z) € V""[z,z7'], h,h € £ can be expanded into Laurent
series

#(z,2) = ¢(Z)&(Z) = Z ¢n¢_n,zfnfh(z)7nu/3’

n,n’eZ+(%)A

where A is 0 or 1 depending on the boundary conditions. The modes ¢,, @, are ob-
tained by contour-integration around the fields:
P R P L )
" 2mi(z - wynl " S ami@—wyrt

The equal-time commutators are defined as

grad

[61(2), p2(w)] = %E%(¢1(Z)¢2(W)|z|:|w|+5 — (=D pr(w)1(2)) lmwl—o

lel=lwl

The commutators can be expressed in terms of modes by contour integrals:

[Af’ Bg:| e.t.

d d d d
= § SS@AQ § SusmBON - § SenBon § SZ AR
¢, 2mi ¢, 2mi c, 27 ¢, 2n

d d
= § 5mas0) § 5 F@AQIBO).
o 2mi 2

By choosing f(z), g(w) to be (inverse) monomials, one obtains the commutators of the
modes. By virtue of the field state correspondence, the grading carries over to the
space of fields V, i.e. it decomposes into so-called conformal families. A conformal
family is the collection of a primary field and all its Virasoro descendants, obtained by
applying lexicographically ordered words in L,-modes, n < 0, to them.

A theory is called minimal (or rational) if it comprises only finitely many con-
formal families. Then the space of states decomposes into finitely many irreducible
(and possibly, indecomposable) representations of the symmetry algebra. The term
minimal is often used to denote that the theory is rational with respect to the Vira-
soro algebra alone rather than with respect to a larger algebra. Because of that, all

5



possible observables of rational theories are determined by a finite amount of num-
bers. In [FQS84, FSQ86], Friedan, Qiu and Shenker showed that for central charge
¢ < 1 there is a discrete set of parameters h,, 4, ¢, , for which unitary theories are not
excluded. Goddard, Kent and Olive constructed such theories with their famous coset
construction and thereby proved their existence [GKO86, GKOS85].

In CFT, the notion of primary and quasi-primary fields is of particular importance.
A field y(w) = > ,w ™™ is called primary, if the subsequent relations hold for all
m € Z.. The sets of relations in the second and the third line are equivalent to the
first line. For quasi-primary fields, the second and the third set of relations is valid for
m e {-1,0,1}.

h 0
Twon = 20 - 2 @

(L, y(w)] = W"(Wd,, + (m + Dhy)p(w) 3)
[Lm’ wn] = (mh-1)- n)'vbm+n VneZ.

This implies the transformation properties

Y(@) = (f (@) "Y(f(2)

for holomorphic f, if  is primary, and f € SL(2, C), 2 if ¢ is quasi-primary.
Applying primary fields to the vacuum lirr(l) ¥(2) |0), one obtains states which sat-

isfy

Lo |hy) = hylhy) )
Ly|hy) = 0 Y m> 0. (5)

These relations define the heighest weight states. In order to introduce a natural pair-
ing, one further needs an antilinear involution w, such that in particular w(L,) = L,
coincides with usual hermitian conjugation. The field-state isomorphism is a basic
characteristic of all (L)CFTs. It is usually implemented by |h) = {g%¢/z(2) |0) whereas

(hl = (0 limg(2)z™. Consistent with that, L, |0) = 0 for all n > —1 and (0] L, = 0 for

all n < 1. By moving a state away from z = 0, the other states of the conformal family
are obtained in the expansion in z.

2The group of the one-to-one maps of the whole Riemann sphere onto itself is the global conformal,
or Mobius, group SL(2, C)/Z, =: PSL(2, C), formed by the mappings

>

az+b <a b

cZ+d’ c d> eSL(z’C)’ a,b,C,dEC,ad—cb:],
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Figure 1: Modules of the Virasoro algebra. The lowest states at the edges are the
so-called heighest weight states.

V" is given by spang {L,-r co Ly > iy=n, 0, <. <0 < 0}. The number of
partitions of n, p(n), is therefore an upper bound to the dimension of the spaces V",
which is saturated, if there are no linear dependencies, i.e. no null vectors. A freely
generated module is called Verma module M(c, h), if all vectors, obtained by applying
lexicographically ordered words of generators to the highest weight vector |h), are
linearly independent as vectors. This is the generic case. But the Verma module is not
necessarily irreducible, there can still be algebraic relations, such that certain linear
combinations have the highest weight property again. These are called null vectors,
because they decouple from all other vectors.

All Verma modules M(c, h) are indecomposable, i.e. they cannot be written as a
direct sum of two or more irreducible modules. From now on, every indecomposable
module is assumed to be reducible, unless stated otherwise. In this case there exists
a unique maximal proper submodule J(c, h) such that M(c, h)/J(c,h) =: V(c,h) is
irreducible.

The submodule structure of Virasoro modules was investigated by Feigin and Fuchs
[FF83, FF]. They showed three different structures to occur: There are either no, one or
infinitely many null vectors. The situation is depicted in fig. II1.1.1, where every cusp
symbolises a singular vector with its tower of descendants. There is either only the
module with the wide line style or both the wide and the middle, or all. The horizontal
lines depict the level /, which is the difference of the conformal weight of a vector to
the conformal weight of its anchestor heighest weight state. The states with non-zero
level are called descendant states. The corresponding descendant fields are obtained
by contour integrals of operator products with the Virasoro field

d d
(nl SN %Wl T( l)% W2 T(Wz) %—T(W})¢/;(Z)

The Virasoro field is a primary field only if ¢ = 0. Otherwise, a conformal transforma-



tion leads to an additional term, the Schwartzian derivative S (f;z) >
_ ey 3df()/dy
df()/dy 2 df(y)/dy

Eq. (3) implies the following Ward identities to hold for the chiral correlator of quasi-
primary fields G(zy,...,2,) = <¢>h] (z1)-- .¢,7,,(z,,)>

S(f2y)

d -2
T() = (d—§> (T0)-55@»)- ©

LiGGeenz) = )06, 2) =0
LGz, 2n) = Y (@0 + h)Gi, ., 2) = 0 (7)

LiGG,- ..o z) = Y (@0 +22h)G (- .. 20) = 0.

This completely determines the one-, two- and three-point-functions of quasi-primary
fields to read

(9i(2)) =0
Cy
($iz)$i(z))) = m ij

3 Ciji
<¢i(zi)¢j(zj)¢k(zk)> = Thi—hj—hx_hj—hg—h; _hi—hg—h; *

ij Jjk ki

The general shape of the correlator of quasi-primary fields is fixed to

(@) . I, (@) = Fxr. o xn)] J @ — 20 ®)
i>j
where
Hij = HMji, Z,Uij = —2h;
i
and

_ (21 = 2)(Zn1 — Zn)
T @ — )

3This is the unique weight-2 object with the properties

S(f;0=0e f(z) = <

cz+d
S (42:2) =520

S(f:2) = (0.2 S(f:8) + S(g: 2)-



Examples of CFT’s are the ghost systems, which will be introduced and investi-
gated in the following sections. The free boson is another famous example. Not only
is it widely used to describe bosons, but also in order to formulate theories in a free
field construction. This is possible in two space time dimensions because of the boson-
1sation theorem [KR&7, Sto].

1I.1.2 Riemann Surfaces

A complex curve, i.e. a complex one dimensional connected analytic manifold, is
called a Riemann surface. They prove most useful in physics: In string theory, the
notion of Riemann surfaces of genus g arises in a natural manner as worldsheets swept
out by strings. The integral over all complex structures (or the moduli space, which is
the space of admissible parameters) plays the role of the sum over all Feynmann graphs
of order g. Apart from string theory, Riemann surfaces have applications in solid state
physics. One example is the simulation of borders or defects, which act like branch
cuts or points. Furthermore, hyperelliptic Riemann surfaces emerge as moduli spaces
of Seiberg-Witten theory, if the gauge group is simple and simply-laced. In this thesis,
I will only investigate algebraic curves with Z,, symmetry.* This means that all branch
points a; on the surface have the same ramification number, called n from now on. Ev-
ery Z, symmetric Riemann surface can be parametrized by numbers a; € C;[;,n € N,
where i = 1,..., L, and can be expressed as the graph

L
F=20.2: y'@=[Jc-a)"
i=1

Then g = (n—1)(L—1)/2 is the genus of the Riemann surface. If any L; # 1, the curve
is called singular. 7., symmetry implies that the monodromy around all branch points
is simultaneously diagonalisable. The monodromy group acts on meromorphic® fields
via the mappings

g, VD2, 7 VP12, 27 9)
¢(z) ¢’ (2) = p(e™(z — @) + ;) leZ, (10)

“The moduli space of Riemann surfaces is 3(g — 1) + 5,1 dimensional. The moduli space of hyper-
elliptic Riemann surfaces of genus g is 2g — 1 dimensional, such that there is a mismatch for g > 2.
Sadly, in string theory, one has to sum over all smooth complex curves, and for higher g not all Riemann
surfaces are at the least Z,, symmetric. This is one of the reasons why string amplitudes were calculated
up to two loops only until now. Seiberg-Witten theory with non simply-laced gauge groups implies
surfaces which do not satisfy this condition, neither.

3In the framework of conformal field theory, ‘meromorphic’ fields are allowed to have conformal
weights h, h € Z,/2.



and therefore forms a representation of the fundamental group. I will denote the cov-
ering map by
z:T'— CP'

and choose local coordinates such that in the vicinity of a branch point a

2(y) =a+y".

The n sheets of the Riemann surface, defined by the inverse of the covering map

@) = - a),
will be counted by O, ...,n— 1.

I1.1.3 Ghosts and Zero Modes

Ghosts are fields which exhibit the wrong statistics. Fermionic ghosts are characterised
by an integer spin but anticommute, and vice versa. Ghost systems arise in different
physical applications. In a two dimensional setting, there is a series of systems, which
comprise pairs of fields b, c with the conformal weights 4,1 — A respectively, such
that the natural pairing f b(z)(dz)*c(z)(dz)'~* is conformally invariant. These systems
can be defined for all half-integer A, but this thesis only deals with anti-commuting
fields with integer spin A. Historically, ghosts were first used to cast away the Fadeev-
Popov-determinant which makes the difference between the path integral over all field
configurations and the one where integration is restricted to the physical field configu-
rations. This gauge fixing does not spoil manifest Lorentz invariance. Modern covari-
ant quantisation of the bosonic string e.g. makes use of the ‘reparametrisation ghosts’
with A = 2; there, the gauge group is Diff (X). In superstring theory its superpartners
with conformal weight % are also used. For investigation, though, it is conventional to
treat the conformal weight as a parameter.

The volume of the gauge group can be integrated out yielding a functional integral
with a Jacobian factor. This Jacobian can be cancelled by the rules of Grassmann
integration that a determinant of an arbitrary matrix can be expressed by a Berezinian
integral over the exponential of two Grassmannians times the matrix,

N
detM =] / db;dc;e"Mier
i=1

with the Grassmann variables normalised such that f db;b; = f dcic; = 1.
This trick has to be refined to calculate the determinant of an inverse propagator
such as the Laplacian [Fad99], [Pok]

/ [ [dbadbodc,dz,e™ 1 = T]A2 = det’A7 .

10



The second equality involves a {-function-regularisation. This integrand is interpreted
as the Lagrangian of the Grassmann fields. In our two dimensional setting, the above
requirements imply the action

1 —_  _
Si= 5 /Edz A dz \/detg (bVi_jc + BV ) (11)

with X an arbitrary Riemann surface. I will mostly restrict myself to describe ghost
systems on the Riemann sphere. In this case, the equations of motion,

Oc =0b=0c=0b=0,

A(b(2)c(w)) = 218°(z — w,Z — W),

yield the propagators
b(z)c(w) = ! +reg(z—w) b(2)e(w) = — ! — +reg(z —w) (12)
(z—=w) Z-w)
c(z)c(w) =reg(z—w) ~0 b(z)b(w) ~ 0. (13)

Analogous conditions apply for the right-moving chiral halves. We will not refer to
them further unless necessary. Since I will work with the algebra of modes in the
following, the commutators equivalent to the above OPEs are displayed below:

b(Z) = z:blzili/l C(Z) - ZCIZ*H/L]

1€7. 7.

{bls Cn} = 6n+l,0-

There exists a complication, though, namely that the Laplacian has eigenvectors to the
eigenvalue zero, the zero modes. These have to be included explicitly into the path
integral. This is denoted by the ‘primed’ determinant. Equivalently, they could be
excluded from integration, because by definition they do not contribute to the expo-
nential. Because zero modes play a crucial r6le in my thesis, and presumably in all
LCFTs, some important facts about them will be summarised below. Further informa-
tion is provided in the appendix.

Zero modes are annihilators to ‘both sides’ of the correlator, whereas their conju-
gate modes turn out to be creators to both sides. For the bc systems, the naive calcula-
tion for correlators on the complex plane (0|1|0) = (0| {b, c}|0) = (O|bc + cb|0) = 0 ob-
viously shows that the vacuum is orthogonal to itself; hence one needs a non-trivial out-
state to get a non-trivial result [GSW], [AGBM*87], [AGMN86]. For genus zero sur-
faces, therefore c-modes have to be included into the path integral to obtain a nonzero
result. More precisely, for the (1,1 — 1) systems the modes b;,i = 1 —-A4,...,1 -1,
are the zero modes such that their conjugates ¢ ;,,i = 1 — A,...,4 — 1 all have to be
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included into a vacuum expectation value to make it non-zero. For genus g # 1, one
has to insert Q = (24—1)(g—1) b-modes into the path integral. Here, negative numbers
imply that c-modes have to be inserted, in order to exclude this number of b-modes.

Ghost systems can be realised by a free field construction. The bosonised versions
of the important fields read

PG = :(z) Pp) ="z (14)
PR = i0e™)(z) (15)
TP = —21:bPdc®:(2) + (1 — D):cPab® :(2) (16)

= %:j“‘)j“" :(z)+<%—a>aj<">, (17)

1 I
So - L dZZw/idetgw(apga@”go—iQRgso) 0=21-1. (1)

where g, and the afore mentioned g refer to the induced metric, and ¢(z) isac =1
bosonic field. This action is defined for all half-integer A, where A and 1 — A is the
conformal spin of b and c, respectively. These are ghost systems for A € Z only. Oth-
erwise, they are just fermions, e.g. the only system with non-anomalous current are
Dirac fermions with A =1 -1 = %.6 More recently, various applications were found
for A = 1 in condensed matter physics. This system has amazing features and has
been investigated very thoroughly by now. These ‘simple ghosts’ are used to describe
self-avoiding walks, the fractional quantum hall effect, percolation, the abelian sand-
pile etc. Furthermore, they are used to bosonise the supersymmetry partners of the
reparametrisation ghosts.

By eq. (12), ghosts are nothing but formally holomorphic differentials, i.e. they
are holomorphic on the punctured disc, see e.g. [FK80], [d’H99], and therefore exist
on any Riemann surface. Below space-time dimension four, the spin-statistic-theorem
applies indeed, but does not yield constraints, because the Lorentz algebra in these
dimensions is too small. Instead, below space-time dimension three, the bosonisation
theorem is valid. Thus, in two dimensions, ghosts are allowed to be physical fields. An
example is the abelian sandpile, described by a logarithmic model of central charge
c = -2, see below (section 11.2.2).

II.1.4 Ghost Systems on Ramified Coverings of the Riemann Sphere

Considering ghost systems on non-trivial Riemann surfaces, one can make one’s life
easier. Below, I will present the material following the original article [Kni87]. On
each of the n sheets of such a surface I', consider a ghost system of arbitrary (half-)

®There is also a system of commuting variables with half-integer spin, which enjoys the same action.
These are the superconformal, or bosonic, ghosts. They will not be examined in this thesis.
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integral spin A. I try to follow the conventions used in large parts of the literature,
when I denote the ghosts by the letters b and c, instead of calling them f,¢ as in
the original paper [Kni87]. To make distinction easier, the typesetting varies when I
change the monodromy basis. The usual fields are set in inclined roman, whereas the
diagonalised basis is denoted by italics. Furthermore, I will denote the conformal spin
by A instead of ‘j’, favored in mathematics and parts of physics literature, in order to
avoid confusion with the ghost current.
To diagonalise the monodromy, let us introduce a new basis of fields

n—1 n-—1
p® = Ze—lm'l% 6(0’ P = Ze2ﬂiICIkQ(l)’ (19)
=0 =0
(k+ A1 —n))
g i= (20)

instead of the old 6@, ¢® |
This also renders the currents

0 = 0 = g0 B,

single-valued functions in the vicinity of the branch points. The monodromy operation
#, becomes #,b" = ¢*4p?D and 7,cV = e7?"4 ) on the Ith diagonalised sheet. In the
new basis of fields, the OPE reads

bR )™ (@) = Spm(@ —2) +:60™:(2) + reg(@ - 2). (21)

By comparison of two different expressions connected to the OPE (21) of b*¥(z’) and
c"™(z) in the vicinity of a branch point, one concludes that g; is the charge of the branch
point with respect to the current on the kth diagonalised sheet [Kni87]. This branch
point can hence be represented by an insertion of a primary field with charge g;. More
precisely, one can rewrite eq. (21) in terms of the old basis 6%, ¢ and perform a
conformal transformation to the single-valued coordinate y. This gives

y, k+A(1-n)
6(k)(Z,)0(m)(Z) — 5k,m(Z, _ Z)—1 (;) ‘
Taylor expanding the second factor at 7" = z, one arrives at the expression
, 4 k+a(1-n) 1 ,
Ot (@ =)+ —— ——@—a)" | +reglx —2).

This expression is compared by powers of (z — z’) to the original one, eq. (21). There-
fore, (20) are the charges with respect to the ghost currents.
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These results lead [Kni87] to the following conclusion: Even if ghost theories also
comprise twists, they can still be represented by a free field construction eq. (17). In
this formalism, the bosonised version of the twist would read

V,(a) = :e' 28 (q) =: :e'%%:(a). (22)
He substantiates his conclusion (22) by the following two arguments:

1. He derives the conformal weights of the twist fields by general considerations

and shows this to be equal to the weights of the bosonised twist fields (22) im-
plied by their charges (20).
First, one notices that 7'(y) has to be a holomorphic field with respect to the
single-valued coordinate y. Therefore, it is regular in a vicinity of y = 0. Be-
cause the transformation law of 7" deviates from that of a primary field by the
Schwartzian derivative (6), 7(z) aquires an additional second order pole in the
vicinity of the branch point with respect to the covering map z.

Assuming a different point of view, one interprets the fields living on the Rie-
mann surface as living on the Riemann sphere with additional insertions of those
twist fields. The expression 7(z) ‘in the vicinity of a branch point a’ therefore
will be replaced by the OPE

hy,Vq(a)
(z—a)
Comparison of powers of (z — a) yields that iy, has to be the coefficient of the
second order pole of T'(z) which reads

ne, 1
h=—(1—-—].
24( n2>

the OPE of the Virasoro field 7(y) with a primary field at some coordinate a,
evaluated at y, merely has a second order pole in (y — a).

T(2)V,(a) = +0(z—a)™". (23)

By virtue of eq. (17) and eq. (20) the conformal weight /& can be expressed in
terms of the charges through

1 1
h=) he=) @i +A= . (24)
k k

which leads to the expression as the second order pole of 7'(z) in the vicinity of
a branch point.

2. Furthermore, he calculates the OPE of b and ¢® and a twist field in the bosonic
language. The outcome of this is consistent with the fact that the branch point
has charge (20) with respect to the current.
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By his first consideration, the charges are fixed up to a twofold ambiguity, too. Because
the conformal weight of a free field exponential is quadratic in its charge, g, and 20 —
qx = q; lead to the same conformal weight, where ¢ = 1 — 240,

If Q = g, of course, both solutions will be equal. But this is no proof that (22) is
the only possibility, indeed, it can be shown that in the case of equality, there is a further
primary field of the same conformal weight, which cannot be bosonised as Knizhnik
suggested. Knizhnik does not comment on the reasons from which he concludes the
primarity of the twist fields. It rather seems to be an assumption than a conclusion. A
possible line of argument would be that twists should introduce superselection sectors
in the space of states. Those are generated by highest weight states, which correspond
to primary fields.

In the following, I will speak of the n ‘sheets’ of a Riemann surface without regard
to whether the fields are from the original or the diagonalised basis, or whether the
CFTs on different sheets are represented by twisted sectors.

IL.2 Some Challenges of ¢ = —2 Systems
11.2.1 7, Symmetry

There is no strict definition of LCFTs in the literature yet. Thus, one may only charac-
terise it by displaying theories, which proved to be well-defined and inherit indecom-
posable representations (while being quasirational with respect to some algebra). In
the next sections, I will review the ¢ = —2 system, because it is the best-known theory
in both, the ghost systems and the LCFTs. It is furthermore used as an example for
what goes on and what one might expect for

1. the generalisation of Z, symmetry to Z, symmetry
2. the transition from spin 4 = 1to 4 > 1.

The ¢ = —2 model on hyperelliptic surfaces can be interpreted as the first minimal
model. The central charge ¢ = —2 can be obtained by setting p = 2, = 1 in the
formula for central charges

N2
cch,q=1—6(p 9)
prq
in minimal models. But then, the Kac table
N2 (2
h.s = (pr=g$)" = =9 :0<r<p,0<s<gq
’ 4pq
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is empty, as in every c,, model with p or g equal to 1. This corresponds to the fact that
the cohomology of the fermionic screening by, i.e. the space one usually regards as the
space of physical states, is trivial.

It was noted in [Kau91], [Flo96], [Kau95] that one can make sense of augmented

versions of these theories, if one allows fields corresponding to the entries in the bound-
ary of the Kac table to be part of the theory. It turns out that one can still find a finite set
of representations which close under fusion. In fact, one has to drop the condition of
coprimarity of p and g. The augmented Kac table is formally given by the table of cg 3.
However, there exist infinitely many Virasoro primary fields in this theory. Therefore,
in the literature, opinions diverge whether the ¢, ; model should be termed ‘minimal’.
This is different from theories which do not have an empty Kac table, where fields from
the border are required to decouple from the bulk of the Kac table. The enlargement
necessarily renders these latter theories non-unitary.
Now, the enlarged Kac table of the ¢, ; model comprises five fields. One of these,
the admissible representation for & = —%, (eq. (24)) corresponds to the twist field on
hyperelliptic surfaces. It is customary to call non-bosonised twist fields p. These fields
will be labeled interchangeably with the corresponding inverse ramification number
%, or with their charges. Gurarie showed g (z) to exhibit logarithmic divergencies in
OPEs with itself [Gur93]. This is possible only if indecomposable representations are
contained in the fusion product of the participating states. The enlargement of the Kac
table therefore yields fields which are termed ‘prelogarithmic’, to express that they are
primaries, but lead to indecomposable representations in their OPEs. Section 11.2.2
will discuss these indecomposable representations.

It was elucidated by [KauO00], [Flo96], [Kau95] that the ¢, ; model describes ghosts
on hyperelliptic surfaces. I will analyse this relation in section I1.2.3.

I1.2.2 Indecomposable Representations

Let me now briefly explain, following [Gur93], why the presence of the twist field gives
rise to indecomposable representations and thus, to a LCFT. Consider a correlator of
four twist fields

<,u%(Z1)ﬂé(Zz)ﬂ%(Zz)ﬂ%(Z4)> = ((z1 — 23)(22 — z)x(1 — x)) Zl‘F(JC), (25)

with x = % being the anharmonic ratio. The fact that the representation corre-

sponding to u 1(2) possesses a null vector at level 2 obtained by applying (L, — 2L%,)
translates into the differential equation

d*F(x) dF(x) 1

x(1 =)= + (1= 20— = = 7F() =0,
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Because the indical equation of this hypergeometric differential equation has degener-
ate roots, both solutions have to have equal asymptotics. This leads to the conclusion
that the two solutions have equal conformal weights. Nevertheless, they are not iden-

tical. Instead, one has a logarithmic divergency. The solutions F and G are given
by

F(x) = C;G(x) + C,G(1 — x) (26)
. 2 de

with G(x) = /M Nprrs =,Fi(3, 50 x <1 27)

G(1 - x) = G(x)log(x) + H(x),  G(x), H(x) regular at x = 0. (28)

By eq. (28) it is clear that the first solution becomes logarithmically divergent when
approaching 1 from below, thus any solution will be logarithmically divergent some-
where on the Riemann sphere. The idea is to interpret this behaviour to be due to a
new kind of field [Gur93].

These solutions have to be interpreted as the outcome of the OPEs of the fields
involved times a suitable outstate. The conclusion is that the channel G(z) has to imply
M1 (Du1(0) = 71 1, whereas the other channel, G(z) log(Z) + H(z), has to correspond to

,u%(z),u%(O) =z (]1 log(z) + TL). From the transformation properties of primary fields
(in particular, under rotations of z by A, implemented by conjugation with e'£0, of
M1 (Du 1 (0)) it can be deduced that 1 cannot be the identity, but has to correspond to a
state |0) which satisfies

Ll0) = |0y (29)

(As opposed to the action of the energy operator on the sl(2,C) invariant vacuum
Ly |0) = 0.) Thus, the matrix representation of Ly on the basic fields contains a Jordan
cell spanned by the vectors |0) and |0) with eigenvalue zero. This is an example of
an indecomposable representation. One can easily infer from this property that such
non-trivial vacuum structure like that of the ghost systems is mandatory, if the vacuum
resides in a non-trivial Jordan cell with respect to L, because of

0 = (Ly0[0) = (0ILy|0) = (0]0).

This new kind of field 1 leads to unusual OPEs. One has to admit powers of
logarithms as well

A@B(0) = "™ "log"(2) (Cypy +...) WithO < r < m. (30)

Here m denotes the rank of the Jordan cell in which the C,,_, reside. This result for
the OPE was generalised to other LCFTs and fixed in its form in [FloO2]. In fact,
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associativity of the OPA and the generic form of the two- and three-point functions
for an arbitrary rank LCFT lead to the restriction that the possible modification of the
OPE can only yield powers of logarithms in addition to its standard form, indepen-
dently of the precise form of the underlying indecomposable structure. If one assumes
that rank-m(h;) Jordan cells are spanned by highest weight states ¥, and their at
least quasi-primary logarithmic partners ¥ ,,.«), 0 < k; < m(h;), whereas states cor-
responding to prelogarithmic fields do not reside in Jordan cells, one can constrain the
shape of logarithmic OPE’s further. With the so-called zero mode content bounds on
the set of indices over which to sum can be derived, and the prefactors can be fixed in
terms of two- and three-point-functions. It is important to note that scale invariance
is not broken by these modifications of the OPE, because the logarithms only appear
dependent on scale invariant quantities, as the crossing ratios. An LCFT is not fixed
by two-, three- and four-point-functions of primary fields only. In ordinary CFT, this
was derived from the fact that any correlator of descendant fields can be rewritten in
terms of correlators of their anchestors. But in an LCFT there exist fields which are
neither primary nor descendant fields, usually, these are the log-partners to some pri-
mary fields. But in fact, LCFTs should be fixed by two, three and four-point-functions
which involve the log-partners instead of their corresponding primaries.

A detailed exposition of Guraries analytic approach can also be found in [Gab03].
In this paper, Gaberdiel furthermore establishes a more formal algebraic approach to
LCFT using the co-multiplication formula [GK96].

A Further Ghost System at ¢ = —2: Zamolodchikov Ghosts. The most thor-
oughly investigated model is the one with highest central charge, ¢ = -2, as it seems
to have some additional features which simplify investigation. Besides the above men-
tioned pair of Grassmann fields with weight (4,1 — 1), which seems to be the most
natural choice for describing dense polymers and to bosonize the SUSY partners of the
¢ = —26 ghosts, the ¢ = —2 system naturally admits two further realisations by ‘sym-
plectic fermions’. The ghosts of these theories are obtained from the above-mentioned
by field redefinitions such that both ghosts have equal conformal weights. Because the
other realisations helped to get a deeper insight, I will give a short overview. The name
symplectic stems from the fact that the OPA of the pairs of new fields can equally be
described by an OPA of one field, the ‘fermion’, (a two-tuple consisting of the afore-
mentioned fields) with a symplectic product. One such symplectic ghost system of
weight (0, 0) [Gur93] was invented, but not published by Zamolodchikov, I will refer
to it as Zamolodchikov ghosts, or, more conventional #6 system. The Zamolodchikov
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ghosts enjoy the mode expansion

0(z) 1= 0 'b(z) = £ + 6 log) + > 67z, (31)
n#0
0(z) == c(x) + 5 log(z) = £ + 6y log(2) + > _ 6,27 (32)
n#0

The action is simply
S = / d°20008 (33)

Therefore the Virasoro field reads
_ —1
1= a0 =S5 " Doig o
n )

Note that the field 6(z) is neither the chiral partner of 6(z) nor the complex conjugate
of it. ’

Comparison yields that the mode expansions of T, and Ty; differ by the term
0 Zn%z‘"‘z. This stems from the fact that 9606 = bdc + bd(; log(z)). Consider-
ing this system with Z,-twists, thus putting them on a hyperelliptic surface, allows for
an identification of the new zero modes with the old ones from the other sheet and vice
versa [Floa]. The calculation of this will not be given here, because it is a special case
of the result in section III.1.

Great success has been made by describing the abelian sandpile within this model
[Rue02],[MRO1],[PRO4a],[PRO4b],[PRO4c]. It describes the surface of a sandpile in a
simplified discretised manner. The field u is used to simulate borders.

Instead of the above mentioned procedure of formally integrating b to 6, one can
put both fields on equal footing differentiating c to a spin-1 field. One obtains a system
with weights (1, 1), which has been considered by Kausch [Kau0O0].

A Deformation. We have seen that certain conformal fields, namely the twist fields
in the ¢ = —2 ghost system, necessarily give rise to indecomposable representations.
One may now ask the inverse question, whether one can consistently extend a CFT
by indecomposable representations. This has first been considered by Fjelstad et al. in
[FFH*02]. In [FFH*02] a deformation technique is developed by which the 5A1(2, (D))
WZW models and the ¢, , models, which include the simple ghosts or symplectic
fermions, are enlarged to logarithmic CFTs. The space of states is enlarged by tak-
ing the tensor product with a finite dimensional vector space K. (See appendix for

"There are other naming conventions, e.g. barred quantities instead of the superscript ‘=", and the
superscript ‘+’ omitted.
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details.) The Virasoro modes get improved by an operator S € End, K, which is the
subset of annihilators of a chosen vacuum of K, times a recognised mode. As an appli-
cation they examined, among others, the simple ghost system. Their ansatz amounts
to a deformation of the energy-momentum tensor by a deformation field

U(z) = Bb(2). (34)

In this case, the annihilation zero mode b, corresponds to the fermionic screening,
which they call §E. The space of states gets enlarged by the creators with respect to
their chosen vacuum, @ € End K of this new auxiliary vector space. Fields corre-
sponding to states which are products of c-modes and the conjugate @ € End K will
span Jordan cells with respect to (Ly + Up). This construction for the special case of
simple ghosts looks like the extra term in 75 after identification of 8 = 6. There, the
logarithmic field 1 corresponds to 1= ‘:99:>.

Consult [Flo03],[Gab03],[Kaw03],[MARSO03],[RT03], also published in [FIR03],
and references therein for a broader review.

I1.2.3 The Relation of the ¢ = —2 LCFT to the Ghost Systems
on a Ramified Covering

It is now apparent that the field u with A, = %, which in Knizhnik’s approach creates a
7, branch point, gives rise to a major modification of the CFT: Some of the modules
become indecomposable, and, along with that, logarithmic divergencies arise in the
correlators. Knizhnik did not notice the indecomposable structures directly, because
though he considered them to be ordinary fields, he fixed their points of insertions in
order to describe the geometry of distinct non-singular Riemann surfaces. Therefore,
his demand on the complex curve to be nonsingular, i.e.

M
I'= {()’,2)3 yn(z):H(Z_ai)9 M:mn}9
i=1

was perfectly admissible. This picture changes if the twist fields are allowed to prop-
agate. The interpretation of two branch points coming close to each other, as required
in the OPE of such, is that the represented Riemann surface leaves the class of surfaces
of genus NT‘2 and r punctures® to reside in the class of surfaces of genus NT_4 and r + 1
punctures. When branch points run into each other, the homology cycles between them
get ‘pinched’. Figure 2 is to be understood as a somewhat handwaving motivation why
one expects something to happen if branch points join. It is not meant as an explana-

tion or precise description of what happens.

81 try to stick to the convention to address distinguished points by marked points, whereas an inser-
tion of a puncture alters the topology.
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Figure 2: A sketch of what happens with a hyperelliptic Riemann surface, represented
as a ramified double covering, when branch points join

It is supposed to show a ‘handle’ of a hyperelliptic Riemann surface X, which is also
represented as a branched covering I', and the homology cycles attached to it. For the
sake of simplicity, I sketch the process of ‘pinching’ of the latter, which happens if the
OPE of twist fields is inserted. Two striking inconsistencies emerge from the results of
Gurarie and Knizhnik.

1. If one calculates the energy-momentum tensor by variation of eq. (11) with re-
spect to the metric, in the so-called twist field formalism, we find a perfectly
diagonalisable action of the Virasoro modes on the space of states, which is
in contradiction to the results of Gurarie. If twists are present in the theory, a
modification of the Virasoro field is therefore needed to unveil the logarithmic
structure. As a consequence, eq. (11) had to be modified to yield the modified
Virasoro field.

2. Knizhnik’s bosonisation formul® do not mirror the facts proved by Gurarie. By
calculating the OPE of two of the bosonised twist fields, one immediately sees
that they, being constructed from ordinary free-field exponentials, do not lead to
logarithms nor logarithmic partner fields

(z—2) 1V, (Ve (@) =

g HO+TRGE- Z)+regz—2).  (35)
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This requires a redefinition of the bosonisation formulz.

This thesis is concerned with the resolution of the first inconsistency. The second
inconsistency is far more difficult to tackle, since there is no mathematically well-
defined bosonisation scheme of the (prelogarithmic) twist field. First attempts in this
direction have been made via so-called puncture operators, see [KL98].

Some further remarks on 7, twisted theories. In [Kau95, GK99, Kau0O] it was
shown that for all twists the W(2, 3) algebra is contained in the extended symmetry
algebra. However, not much is known about these extended symmetries. There are
indications that the affine Lie algebra for Z,, symmetry is su(n), i.e. there is an entry in
the corresponding Kac table for a degenerate ¢ = —2 model [Floa], which has suitable
conformal weight to describe the Z,,-twist. This would render the symmetry algebra an
extension of a W(A,_)-algebra. In [Wan98b, Wan98a] the modules of ‘W (2, 3) were
classified. There are no null vectors which would yield differential equations allowing
to do a similar reasoning as Gurarie did. However, in [KauOO] a co-multiplication
formula of [GK96] was exploited to derive a differential equation on twist-correlators
in the (1, 1)-symplectic fermion model with ‘W(2, 3) as symmetry algebra.

I1.2.4 Putting Things Together

Fjelstad et al. showed in [FFH*02] that with help of a certain operator, acting on the
tensor product of the Hilbert space with an auxiliary vector space a logarithmic defor-
mation operator can be obtained. They invented a tool to enlarge CFT’s to LCFT’s, i.e.
irreducible representations to reducible but indecomposable representations at the cost
of postulating new states in the spectra.

The required artificial enlargement of the space of states by an auxiliary vector
space may seem out of place in applications. New states in the spectrum would seem
somewhat ad hoc - one is forced to introduce logarithmic fields, but does not know,
where the auxiliary states for the deformation should come from. Of course, Gurarie
also enlarged the field content of the theory, but for a different reason: This was to
maintain consistency of the operator products with his results on the shape of certain
four point functions.

Renaturation The problem with the auxiliary vector space introduced in [FFH*02]
is that it obstructs a geometric interpretation. This would be resolved if one solely
applied recognised modes onto the vacuum to build the space of states. Under certain
circumstances, this is indeed possible. If the theory is set on a Z,, symmetric ramified
covering on the Riemann sphere, modes at one’s disposal suffice. On any sheet, one
can allow for all words in c-zero-modes from all other sheets to be applied on the
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original states, and then take the direct sum. The space of ground spaces, as a whole,
is not altered at all, because zero modes have to be included in correlators in any case,
because of the charge anomaly. On distinct sheets, one can introduce deformation
fields in a fashion similar to that of [FFH*02], and investigate whether the space of
states decomposes into indecomposable representations of the sum of the Virasoro
and the deformation field. To see that this is a more natural construction, one should
remember that the ghost systems do perfectly well without logarithms, in case no twist
fields are present. But if they are, they introduce branch cuts — at least at the level of
correlators, as discussed above. That is, the other fields of the theory naturally live
on branched coverings of a Riemann sphere or plane. But then, Knizhnik’s procedure
allows — at least nearly — to diagonalise the monodromy, such that one ends up with
n copies of CFTs on n sheets, such that the total theory is a tensor product of the
theories on the individual sheets. Actually, these theories turn out not to be completely
independent. In fact, the OPE of two branch points gives rise to logarithmic fields,
for which corresponding states have to be constructed. The only consistent way to
introduce these additional states without resorting to artificial add-ons is to let the zero
modes ‘shine through’. This thesis will make this idea explicit. However, it is worth
noting that the ¢ = —2 Zamolodchikov ghosts fit in this concept, since each of the 6
fields contains an additional zero mode compared to the bc system. As stated above, the
energy-momentum tensor 7 associated to these fields comprises an extra term, which
looks like the deformation in [FFH*02]. To summarise: The existence of twist fields,
which are used to simulate branch points, together with the properties of a well-defined
OPA, imply the existence of indecomposable structures. The necessary enlargement
of the space of states will be achieved, in contrast to [FFH*02], with use of additional
modes, which are already present. Namely, I will use only (products of) modes of the
other sheets of a ramified covering, without the need for an artificial construction.

II.3 Some Questions Connected with 1 > 1

In section III.1 et sqq. we describe new (L)CFTs connected with ghost systems in
the presence of higher twists. Here, we want to display our original motivation to
investigate. This paragraph can be omitted on first reading.

It seems natural to ask whether other ghost systems exhibit logarithmic divergen-
cies and indecomposable structures as well. There are striking differences between
models with 4 = 1 and A > 1, but also a lot of similarities.

To my knowledge there is no direct proof of other ghost systems being logarithmic
until now. One sees by inspection of the respective formule of the central charges
for the minimal models and the ghost systems that for 4 > 1 ghost systems cannot be
minimal, but at most rational, because they do not fit in the allowed set of ¢, , values.
Those ghost systems can be parametrized by [GT89] ¢/ = 1 + 3eQ” with & = (—)F
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being the eigenvalue of the Witten index, and Q the (integral) background charge at
infinity. Virasoro minimal models are parametrized by ¢,, = 13 — 6(2 + %) with
integer, coprime ¢, p. For this reason the ghost systems may not be regarded as such,
except for p = g,g = 2p or p = 2q (and Q = 1 or 0), if one drops the condition of
coprimarity.

In [GTR89] it is shown that all central charges and conformal weights correspond
to rational numbers, which seems to be characteristic of rational models. However,
this does not prove that with respect to a the Virasoro algebra alone, there are only
finitely many primaries. To get the rationality of these structures you might have to
invoke the full maximal extended symmetry algebra. It is not refered to the maximally
extended algebra, and even the simplest case, ¢ = —2, is not rational with respect
to the Virasoro algebra alone, but only quasirational, i.e. it has a countably infinite
set of irreducible representations (and possibly indecomposable representations). In
contrast to the reasoning in [GT89] all Virasoro algebras realised by ghost systems fail
to meet the condition [FSQ86, FQS84, BPZ84, Flob] that the effective central charge
must be strictly less than unity rational models, which are rational also with respect to
the Virasoro algebra alone. On the contrary, it is easy to see that the effective central
charge, c.; = ¢ — 24 - hy,y, 1s exactly unity for all ghost systems.

Thus, rationality could only be achieved with respect to an extended symmetry
algebra. These extended symmetry algebras are not known, and it is a conjecture
that if the set of all conformal weights of a model is a subset of Q this implies that
this theory has only finitely many respresentations. In particular, certain null vectors
exist only with respect to the maximally extended algebra, but not with respect to the
Virasoro algebra alone. But the maximally extended algebras of the ghost systems with
A > 1 are not known. Therefore even the lowest null vectors are unknown and so is the
classification of the representations of the 4 > 1 ghost systems.

However, there are some facts that indicate indirectly that indecomposable struc-
tures do exist in these models: Most strikingly, the different ghost systems are con-
nected via a spectral flow, which is indicated by the fact that the partition function of
different twisted sectors depends, up to a prefactor z%, only on the sum of the confor-
mal spin A of the antighost b and and the twist @. See [EFH98] for further information
on that topic.

One particular example has been investigated by Krohn and Flohr [KF03]. Via
formal integrations and field redefinitions, reparametrisation ghosts in the presence
of Z,-twists, are turned into ‘generalised’ symplectic fermions which resemble the
Zamolodchikow ghosts. But their results seem not to work for other twists, and the
calculations have to be redone separately for any model with higher spin. The approach
of this thesis is somewhat different, because generalised symplectic fermions require
(24 — 1) integrations and therefore the mode expansion of the stress-energy tensor
becomes logarithmic as well. One way to circumvent this would be to try to exclude the
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zero modes from integration and afterwards add them with the right powers of z. This
could cause problems with the field-state-correspondence, or at least look unnatural.
Rather, in this thesis, I directly deform 7" without the attempt to interpret this as a
consequence of a redefinition of the basic fields. The investigation will be performed
by pure algebraic means, no use is made of the properties of the OPE. Unlike the
modus operandi in [KF03] I will not try to express the modified energy-momentum
tensor by deformed fields. To obtain a logarithmic deformation, 8 has to be nilpotent.
I am thus interested in a realisation of 8 by either known nilpotent (finite sums of)
operators or nilpotent fields obtained by (concatenated) normal ordering procedures or
differentation of the so-called basic fields. These fields should satisfy the field-state-
correspondence. I conclude this section with a summary of the different realisations of
the ghost systems. This might prove useful to get a better overview and to relate my
general results to the simple and well-known example ¢ = —2.
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III Simple ghosts and arbitrary twists

III.1 Possible Deformations for 7Z,, Symmetric Surfaces

In the last sections I reviewed how simple ghosts on a hyperelliptic surface can be
made a logarithmic theory. I also stated that the additional zero modes can be chosen
to be ‘primal’ modes from the other sheet. This section is devoted to survey if and how
this identification can be generalised for the Z,, symmetric case. To that end, I derive
constraints on recognised states which render the auxiliary vector space dispensable.
For the beginning, I will stick to an ansatz similar to the one proposed in [FFH*02] for
¢ = =2, as discussed in I1.2.2, to check whether the original Hilbert space suffices for
7, symmetric Riemann surfaces as well. As done in [FFH*02],[KF03] I will add an
‘improvement term’ U*(z) to the Virasoro field T®(z) (16) on the individual sheets.
The modes of this improvement term are denoted by °

Zf,’l‘) = L™ 4+ UM refers to the new Virasoro modes.

Besides two mixed terms, a commutator of two ‘improved’ modes leads to a commu-
tator of two deformation terms, which has to vanish in most cases, because the action
of the deformation field should be nilpotent, and a commutator of Virasoro modes.
Recall that the latter yields the famous Virasoro algebra

c +1
[P, L0] = ((q —m)Ly), + 5 (‘1 : )5q+,,,,0)5k,,.

In the following, I investigate for which choices of S this algebraic structure remains

°In the following, fermionic normal ordering is implicitly understood for the Virasoro field and its
deformation. If A, B, C, D are fermionic [AB,CD] = A{B,C}D - {C,A}BD + CA{B,D} - C{D, A} B.
Interchanging C and D gives the same result with an overall minus sign, so normal ordering can be
neglected inside commutators up to normal ordering constants. (The same holds, of course, for A and
B because of the antisymmetry of the commutator). Another way to view this is to recall that a normal
ordered product of two operators differs from the formal product only by certain commutators of modes.
If both operators are contained in an algebra which only allows for central terms, this merely yields c-
numbers. A commutator of such formal products is the same as a commutator of the normal ordered
products plus central terms. Therefore, normal ordering is irrelevant for the derivation of the constraints
— under my assumptions, it could in the worst case lead to constants, which have to vanish.
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the same.
(k) Ky () MM 7 70
[Lq +Uq L)+ U1 =[L, L]

q >m

! c +1
= ((q - m)(LEI,:?]n + U[(]/-?ITL) + -~ (q 3 )6q+m,0)6rk

2
= [LP, L]

u b,
Ly T

+D (=D (6] {2 BN = 7.6 e ) + BOb 6 i)
)

b
"
L1

k k k k k
= =) (B4 B — B0, BV BY + BB Be,01k)
t

w b
Ly /1]

B {0, g0} b — (B0, 5O pOD — g0 (B, g} b0
With abbreviations

[yo= {ﬂ(r),ﬁ(k)}
Yok i= {Cgk)’ﬂ(r)}
Qg = {bg),ﬁ(k)}

the condition reads

(q=mUD,6x=> (q- 1) (~arncl b = by g1,b + OB 6,10 meq1)
)

k k k
_Z(m - t) (_a'r,tlkcfy?_;b;) - bE] )Yr,r1l—t|kb£r) + ﬁ( )bﬁr)é‘k,rém+q,z‘)
t

+B(r)a’r,m\kb(qk) - Fk,rbx)b;k) —BPay b (36)

At this step I have made the assumption that 3 is not a product of modes, or at least,
not a product that contains c-modes. For any g that satisfies the following equations
for all m,q € Z,

> (= Dyrmb b + (q = Dyigoabi b)) = i bbY, (37)
1
> (m = Dacty) bY = (q = Daggecy b)) =0, (38)
)
ﬂ(r)a'r,mlkb(qk) _ﬂ(k)ak,qlrbg) = 0’ (39)

the modified Virasoro modes still generate a Virasoro algebra:

> (g = DBVb 518 eqs — (m = DBOLY 61,0 gmi) = (m = PBVBY. O (40)
)
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Unless / = 0, eq. (37) involves a vanishing vy, ., because each term contributes a
unique mode content. If, on the other hand, / = 0, all terms have the same mode
content. In this case, evidently, the prefactor vanishes as well, which implies that
'y, 1s zero. Therefore 8 could be a linear combination of zero modes from different
sheets. Eq.s (38) and (39) imply that all individual terms have to vanish separately due
to their diverse mode-content. Only by-modes can contribute to a linear combination
as an ansatz for 8. Of course, monomials in by-modes from different sheets are also
possible. These will be scrutinized further in section IV.1. With such a linear ansatz,
the rhs of eq. (37) vanishes due to the fact that all bg‘)’s anticommute with each other.
Also, the lhs vanishes because of the coefficient being proportional to the second entry
of vy 4 which is proportional to 6,y. Eq.s (38), (39) are fulfilled trivially without further
constaints. Eq. (40) is fulfilled independently of any ansatz for .

III.2 The Action of the Deformed Virasoro Modes on the State
Space

The action of the new Virasoro modes on the various ground states may result in addi-

tional conditions if the matrix representation of L is to contain Jordan cells. I denote

()
0

n—1
the ground states as [](cy”)™ |0y with N, € {0, 1}. The ordering prescription is that

k=0
c® resides on the left of ¢ if 0 < k < [ < n— 1. The preceeding consideration showed
that S© has to meet the same commutation relation as a b-mode from another sheet. I

therefore impose a linear combination of those as an ansatz for S®

n—1

9= 3 M.

s=0
With this, the deformation U® = g®p®) acts as

n—1

n—1 n—1
Ug” [T 10y =D mubi’bg’] [’ 10)
=0 s=0 =0

n—1 Ll
>Ny
== ) My(=Y= " Sna0n | [ 10) (41)

s=k+1 1=0
k#l#s

k 5
>N
+ Y M () Sya0n, [ [ )M 10y
s=0 =0

k#l#s

on arbitrary states matching the afore mentioned conventions. In the last step I ‘re-
arranged’ signs by raising the summation index in the exponential to avoid a space-
consuming case discrimination. The summation is understood to give the same result
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if upper and lower bound are interchanged. Demanding the existence of Jordan cells
also for LY yields

n—1 n—1 n-1 S
EN[/
0# U TJe 10 == > Ma(=y= " oyadna [ [ ()" 10) (42)
1=0 k=0 s=k+1 0
n—1 k Zk:N
I/
N M (=)= Sy 0w [ ()M 10).
=050 2,
By relabeling of dummy indices in the second term one finds
S >N (D\N,
0% —=> Ma(=) " 6y.16y.1] [ (6" 10) (43)
k=0 =0
s=k+1 k#l#s

n—1 L)
SNy
+> M=% Sy | [ ) 10)
k=0 =0

s=k+1 k#l#s

and finally
- S (D\N;
0% > (M, — M) (=Y Sydn [ [ 10).
siti) 1 I«[;lgs
n—1
Thus, if one denotes P, := span{|y) = H(c(()l))N’ |0) : Ny, N, # 0} it follows that
1=0
Msk * Mks = Zg)t |¢> ¢ ¢)rs- (44)

This assures rank-two Jordan cells in the action of suitable fields, regardless of the
number of sheets. All groundstates are highest weight states with respect to the de-

_ n—1
formed Virasoro modes, because only co-modes contribute. Therefore L[| (cg))N’ |0) =
1=0

0 for all n > 0. This shows that the extension of the energy-momentum tensor leads to
logarithmic divergencies in OPEs. The results above are in perfect concordance with
the results of [Kau0O]. Considering weight (1, 1) symplectic fermions Kausch could
prove that for all ramification numbers, the functional dependence of the four-point

function < H1(co)us (1),u% ()1 (0)> on the crossing ratio aquires at most one logarithm

as a factor. This exactly happens if either % +% € Nor % + % € Nor %+ i € N, the other
sums are then fixed by charge balance. This just expresses the fact that those twists are
dual to each other.
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IV Deformations for 1 > 1

Elated by the possibility to realise a logarithmic extension of the simple ghost system
on Z, symmetric Riemann surfaces, one could try a similar procedure to see if other
ghost system CFT’s representations can be enlarged alike.

Apart from the differences between models with 4 = 1 and 4 > 1, a comment on
the word ““alike” is in order: Fjelstad et al. remark that only if their operator “E” is
a primary screening current, no logarithms show up in the deformed fields. This, in
particular, should be the only possibility for the deformed Virasoro field not to contain
logarithms, i. e. to have a well-defined Laurent expansion. (An attempt to deform T
with R(w) log(w) can only be consistent with the property of 7" to be a primary field —
except for the conformal anomaly — if R contains logarithms as well. A consistent con-
struction, if possible, looks unnatural and therefore will not be pursued in the present
paper). Fjelstad et al. corroborate that their construction works with nilpotent bosonic
operators as well. Despite that, they consider it for their purposes appropriate to re-
strict to fermionic screenings. (On that account, they had to restrict their examination
to the ¢,,1- and the ¢, ,-models, g odd.)

For the simple ghost system, the b-field may serve as the primary fermionic screen-
ing current and permits the construction discussed above. But in the other models
no fermionic primary screening current is available, because of b and ¢ being A- and
(1-—A)-differentials, respectively. N-fold integration and division by powers of z do not
only lower the conformal weight, they also convert the A-differentials into non-primary
fields. However, the ¢ = —2(64%> — 64 + 1), A > 1 models lack primary screening cur-
rents at all: For A > —% the current j(w) = :bc:(w) = :6u:(w) is anomalous

T@jo) ~ —— 4+ — L jon + —L@j)om).
(z—=w)  (z—w) Z—w

An attempt to deform 7" by modes of the original space of states without use of
logarithms is not along the lines of [FFH*02]. Of course, one could look for a more
general setting allowing for a deformation without logarithms (in 7) and auxiliary
states. Instead, the important point is that it is not known whether ghost systems with
J > 1 are genuinely subtheories of logarithmic ones. I will examine ghost systems
with 4 > 1 the way I did for ¢ = -2, believing they admit deformations of 7" which
act constistenly on the space of states, because the setup is similar to that of the case
before.

IV.1 Derivation of the Constraints

Below, I investigate if a more general deformation of the Virasoro modes will leave the
commutation relations unchanged. Proceeding as in section III.1, I use the following
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ansatz

U(S) — ZP(A y,l S)ﬁ(s) (S)

leZ
which results in the requirement
(x=NUY, = (x =Y _PAx+y.Ls)B b 5, (45)
]

= (Ax- k)bg’){ §?k,ZP(/1 w1, s)ﬁ<~"} b, &
k
{ZP(A v 1, 5B, Z(/lx k)b(’)} b, o

+Y_PQ.y.1, s)ﬁﬁ”ux =X+ =B 0 .
I
- (Zuy - k)b,i”{ & 2P xm r)ﬂ(’)} b, *
k
{ZP(/I xm, Y.y (y - k)b;”} © b0 o
k

+ P, x,m, By =y +m= b0 ) .
<ZZP(/1 x,m, PPy, 1, )80 {60, 8} b7, ©
=3 P,y L )P, x,m, 1) {6, B} B, bY, »
[ m
—ZZP(A L )P, x,m, )" {b, B} bi%) : v

One obviously has to collect terms with the same total mode-content, i.e. the total
number of modes in products, first. The total mode content is the same for commuta-
tors of two deformation modes and commutators of Virasoro modes with deformation
modes, only if the ansatz is a linear combination. Then terms in eq. (45) denoted by
different suits contain different numbers of b’s and ¢’s (because the commutators give
c-numbers), and therefore can be treated separately. All graded commutators of pure
products in b-modes obviously vanish.!” Furthermore, each proper polynomial ansatz

10Constant central terms are excluded, because these would alter the central charge — but the central
charges of ghost systems are fixed to ¢ = —2(642—61+1) by the properties of the OPE. For deformations,
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can be treatet degree-wise, because only normal ordering could intermix terms of dif-
ferent total mode content. With linear ansatzes or h-mode-monomials,!' this amounts

to a set of four equations
{(®), (B, (©), (D)},

the implications of which will be discussed below.
The terms marked by & result in the subsequent constraint

(x=y) - Uy, (464)
=(x=y) > P, x+y,k BB 6,
k
< ZP(/L A s),Bgs)(/lx -x+1- y)bif?x,,(ir,s
1
- ZP(/L X, m, r)ﬂr(;)(/ly —y+tm-— x)b.(x’:zyﬂnér,f'
Comparing coefficients yields

PA,y, 1, s)(Ax —x+1—y) = P(A, x, 1, 5)(Ay =y + [ — x) (474)

=(x—-yPUA,x+yls) Vi, x,y.
This recurrence relation can be turned into an explicit one. By setting y = O one obtains
P40, s)Y(Ax—x+1D)—PA,x,1,8)(—x)=x-P4,x1,s).

The recurrence relation can thus be solved, provided P(4, x, [, s) satisfies the condition

|P(1,0,1,s) (A-1)-x+D)=1-PQx15s). | (®)

One finds that the solution factorises into one part for /, A, s fixed, and an up to now
unspecified part which could be a functional depending on /, 4, s. As a first difference
to the simple ghost system, the Virasoro algebra condition fixes the general form of
solutions. In the former case, one had to get rid of several terms, but nothing had to be
adjusted beyond it. Clearly, for A > 1 the solution reads

P, x,1,5) = Ay (A= 1) - x+1), @

but for A = 1 any dependence on [ is allowed. In particular, the solution may be chosen
to be independent of 1. 1It is thus possible to deform Ly by a term containing only

which contain c-modes as well, eq. (45) would only be correct to the highest degree in modes, because
I neglected normal ordering.

" For powers in b-modes, the last three terms have higher total mode content and therefore have to
vanish separately, and, of course they do.
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zero modes of conformal weight 0, i.e. Aj;; = B0;0. For Z, twists, this yields the
deformation suggested in [FFH*02], which partly characterised my initial position. If
A > 1, terms, which contain only zero modes of conformal weight 0, do not contribute
to Ly due to the additional factor of [ = 0.

As long as A > 1, eq. (#) reveals that the deformation terms have to have exactly
the same form as the original Virasoro modes, with the c-modes replaced by S’s. One
might be tempted to arrange them in the same manner as the modes constituting the
original Virasoro modes. This, however, leads to a recurrence relation which does not
decouple and thus seems not to be solvable in an acceptable amount of time and effort.
Instead, I deliberately ordered them the other way around — and got a relation which is
easily solved.

Next, the & terms are collected.

ZP(/I, ¥, L )(Ax = k) {0, BV} BB,
+ZP(/1 x,m, r)(Ay — k) {c(v)k, By} Y, b

- ZP(/I, v, L )P, x,m, ) {1, B0} b2, bV, (48,)
m,l

Again, this equation can only be fulfilled mode-wise. After imposing eq. (%), it be-
comes clear that { ci’_)k, ,88{ 1)‘.} does not contribute to the above sum, because ngll)y
does not contribute to U;S) either. Nevertheless this mode will contribute to any other
{c(xf) vk U(S)} x', y, k', chosen so that A,y # 0 # (Ax" — k'), and therefore its
anti-commutators are fixed. Hence, eq. (48,) simplifies to

P(A,y,1, s)(Ax — x +m) {2, B} (494)

+P(A, x,m,r)(ly —y+1) {C(s) ﬁ(r)}
= P(4,y,1, $)P(4, x,m,r) {,3(5) (r)

"1

Imposing the solution (%) yields

A/l,l,s {C(r) S)} +A Am,r {C(S) (r)} A/l A, sAlm r {:8(5) (F) . (*)

m > "1

In contrast to their predecessor, eq. (&), the equations which arise from the ¢, © terms
can have nontrivial solutions only on the same sheet (or perhaps in the sum of all the
individual sheet-theories). This is because the & terms are the only ones which merge
two b-modes on different sheets rather than two different modes on different sheets.
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The ¢ terms read altogether

> P, x,m, 1y — k) {8, b} b0,

m,k
=Y P(dy.1s)Ax = k) {8, b} <, bS, . (50,)

Kl

Setting on the rhs

l=y—x+m, k=x—-y+k

gives
> P x,m )y = k) {0} b0, (515)
m,k

= ZP(/I, vwy—x+m, s)(Ax—x+y—k') {ﬁ;s_)xm,, bf{}w } c§f3k,b§f_)m,.

m' k'
Imposing eq. (§), comparison of the modes involved yields

A= Dx+ m)(y = k) {8, b} (520)

= A/l,y—x+m,s((/l - 1)y ty—x+ m)(/lx —Xx+y-— k) {ﬂivs—),w.m, birz)z+k} .
Obviously, this can only be fulfilled if the coeflicients are zero for r # s or if one drops
the condition that the different Virasoro algebras commute, i.e. only looks at the total

theory. The first possibility amounts to {8, 5"} = 0 except for r = 5. Summation
over all sheet-labels in order to obtain a weaker condition on the other hand yields

A (A= Dx +m)QAy — k) {2, b0} ©)
= A,l,y—xﬂﬂ,s((/l - 1)y +ty—Xx+ m)(/lx —XxX+y— k) {ﬁ§?x+m’ bisjy_'—k} ’

where the dummy indices have been relabelled on the rhs. The equation had to be
fulfilled for all integer values of x and y. Setting y — x =: a and assuming both sides to
be non-zero numbers one infers

Avams((A= Dy +a+mAx+a—k) o {BD. b}
A/Lm,r((/l - 1)x + m)(/ly - k) {,BEQm, b(,s[)Hk} .

(53.)

The rhs does not depend separately on x and y, but only on the difference a, whereas
the lhs is a rational function of both, which contradicts the assumption. Even if only
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the total theory is required to be well-defined, {5, b,(f)} has to be zero, if 8 is realised
as a state corresponding to a free field. Collecting the ©’s gives

> P x,m P Y.L 5) {bD,. 87} BB,

m,l

=Y Py L P, x,m, ) (B0, B0 BOBD,,. ©)
m,l

Referring to this constraint, condition of the total theory to be a well-defined tensor
product actually implies the individual theories to commute. A similar computation
as before implies that all commutators of S and b have to vanish, if the ansatz for S is
linear. This excludes any c-modes as constituents of the field corresponding to 8 in a
linear ansatz also.

IV.2 A Deformation by Free Fields

The preceeding section IV.1 leads to the conclusion that 3, as for ¢ = -2, is allowed to
be a linear combination of h-modes. In this case the rhs of eq. (%) vanishes.

A/l,l,s {Cﬁ':), ES)} = _A/l,m,r {Cgs)’ﬁ,(,:)

n—1
Imposing the ansatz 8\” =: 3" M;,b™® gives
k=0

n—1 n—1
E k) E '

0= MksA/l,l,s {CE’:), bg } + MprA/l,m,r {C;S), bg’f)
k=0 p=0

which implies

MrsA/l,l,s + MsrA/l,fl,r ; 0 (54&)

If one allows M,, to be non-zero on the rth sheet, A, _;, is fixed as well, A, ;, = A -
A term of the form M, A, occurs with a prefactor of (4 — 1)n + [) in U'Y for every n
and some [ if any L is to be deformed. The only possibility to deform 7 (z) without
changing a distinct mode, say L,(:), is to demand

AdLs = AL -2k sO1-k 1>

because then U reads

Z M, A —ayis((A = D+ (1 - /l)k)bg)_,l)kbs—)(l—x)k’
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which obviously vanishes if and only if n = k, provided A, ;- s and any of the M,

are non-zero. Due to eq. (54,) U (_r,f vanishes, too, but

> My - (A= D= (1= DBy by = UY

is forced to be non-zero. This implies in particular that if on any sheet, say s, LY is
to be deformed, there will be another sheet, for instance called », on which L(_r? will be
deformed. Thus, deforming in this manner implies the existence of at least one sheet
with a deformed translation operator. Of course, this leads to something ‘new’, only
if its action on quasi-primary fields is altered as well. Then, the Ward identities eq.
(74) would no longer be valid. This shows that some of the conditions were indeed
necessary, to generalise the Ward identities in such a simple and elegant way.

Opposed to that in the fotal theory, one can choose a whole subalgebra (spanned by
LY, L") of Vit for one y to remain undeformed. Because of this, one can even enforce
‘non-logarithmic’ Ward identities. Let’s see how this works. There, an additional
symmetry can be used to make two of the deformation modes vanish. Because of eq.
(54), with a non-zero A, M, A—isMys will be non-zero as well. For a term in a
total deformation mode with conformal weight —y, one can find exactly one second
term with the same mode content, by inversion of the second index in A, at y. This
implies A, ;M and A, ;Mg to be prefactors of terms with the same mode content
in U}, By fixing A M;; for one tuple /, s, k and adjusting other prefactors, depending
on the y chosen, recursively, in principle all terms contributing to a specific U} could
be made to vanish. This leads to a series of constraints:

—((A=1=0y+ DAy iy sMis = (A + D)y — DA s 1)y—1x M

. ) Yie N 55
—((A=1=0)y—DAs 1 iyMg = (A + D)y + DA s 1)y+1,s Mis } : (55)

The logic behind this is to fix A, ; ; M, for one tuple (/, k, s) to a distinct non-zero value.
In the total theory, now the values A, , ;M could be adjusted for one y and the same
(L, k, 5) as before. Therefore, I have a non-zero deformation which would vanish in the
total theory, if it were not for the extra terms fixed by (54,). These could be cancelled
by further terms, as denoted in the figure below. This picture has to be understood
such that the prefactors of the modes corresponding to the displayed tuples have to
be adjusted to be equal if joined by horizontal arrows, whereas terms connected by
vertical arrows are mutually fixed by (54,).
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Ls) ————> (y-Lk) (—2y+l,s) ———— > (3y-1k)

¢ ¢

(=y,8) ————> (2y-Lk) (-3y+ls) —————>
(-Lk)—————> (y+ls) (2y-LK)————3 (3y+L,5)
(=y-1k) > (2y+Ls) (By-Lk) >

Generically, if these conditions are to be met, infinitely many terms have to contribute
to the individual deformation modes. This extends to terms which do not contain
zero modes any more and are mappings from excited states with negative ghost charge
to such with positive ghost charge. However, if the ‘initial’ / is chosen to be zero,
there is only one condition in the first place. Furthermore, the sum will terminate at
(4 — 1)y = i. The prefactor of the second term cannot become zero at all, so one may
adjust all A, 41y, My With [i'] < (4 — 1)[y| to meet the above conditions.

The choice of / to be zero implies that the equations emanate from each other by
permuting their sheet-labels

0=@QA-1=0)yA, iy Mis + (A + DYA ity M

. . Vi € N. 56
0=@QA—-1=0DyA, _jyiMg + (A + D)YAa ir1yy,s Mg } (56)

However, eq. (54,) then implies that this equation is still valid when the sign of y is
flipped. Thus, with a vanishing U, U" also vanishes.
A similar behaviour of an improved ¢ = —26 theory was noted in [KF03].

IV.2.1 The Action on the Space of States

Imposing the constraints derived above one should explore the action of such a de-
formation on the space of states: I restrict myself to the action of U on the various
ground states which have the form

-1 n-1
(cUPyNeir 10 with N, =: N, €10, 1}.

r=1-1 [,=0

Thereby, I implicitly adopt the ordering prescription that

it (n—Dr+k = ak) < a(k.), ¢ resides on the left of ¢4, (57)

r r

An occupation number formalism seems to be more adequate than a tensor product
formalism. This notation could prove to be more natural if, like in the ¢ = -2 case,
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some of the zero modes “show through”. At least the mode ¢, with conformal weight
1 — 4, being the constant term in the Laurent expansion of the field ¢, is present on all
sheets around z = 0, and not only on the /th. But at z = oo, its hermitian conjugate
cgl) , 1s the constant term, because the conformal mapping gives an additional factor of

z*2*. On the contrary, the zero modes of the pair of weight-0 ‘Zamolodchikov’ ghosts
remain the constants of the mode expansion.

As one would expect from a tensor product, even the unmodified L® act on these
states in an illdefined way. This will be investigated in depth later in this section.
However, that is why I am interested in Jordan cells which survive the summation over
sheet labels. To this end, it is worth noting that in the attempt to find Jordan cells, the
terms involving the conformal weights I’ # +/ act independently even after summation
over sheets labels, 1. e. they yield different mode contents of the resulting states. Hence,
one could as well investigate them separately, because summation can not destroy the

Jordan cell structure:

(k) n—1
= S Mg (A= Dm + DA b bE  + (A= Dm — DA, b6,
s=0

)

m

(k)

i)
with U® = S i . The action of the ‘atomic’ deformation #, of Ly’ on the ground
i=0

states then reads
n—1

o H [T 10y

r=1-1 [,=0
n—1 -1 n-1

==Y imy (AA,,(H b LA <S>b<k>) (@ [0y

s=0 r=1-1 [,=0

ki

n—1 Z N, -1 n-1

I‘I,
: ZzMsk( ax o wen TT TLE) 10)
r=1-1 [,=0
s_i %l #k;
k_j
’Z Ny, -1
+A (=) o aon 1 [T T |0>). (58)
r=1-1 1[,=0
S,¢1 :/:k—l

n—1

The overall sign in the 1.h.s. of the above equation stems from the ordering with respect
to increasing indices of the first term which is proportional to A, ;x. In the r.h.s., one has
to pay attention that to move one of the b-modes to the right of its conjugate requires

ko

> Ny:= ) N,

rm

rm=01-1 alrm<atk_)
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permutations. E.g. a term with mode-content 5%)b", 1 > 0 produces the sign

k_j-1 8j-1 S1-1
Z N, rm+ Z N, m Z N m
(—1)"m:01—,1 rm=01_) — (_1)l‘m:k—[

Because states residing in the complement of the kernel of b bgk) are characterised
by both N, _, , and N;,_, being equal to 1, we can account for the additional minus sign
mentioned above by extending the summation over occupation numbers. From eq. (58)
it is evident that all resulting states appear twice, once with A, ;; and once with A, _;.

To check whether coefficients cancel each other, one relabels roughly one half of the
(k) 1 n-l

terms: Interchanging labels in (58) for s > k yields o 1T TI(c"HNr10)
r=1-1 1,20
n-1 Z Nl n—1
=i I)\N,
= Zl( /llkMsk +A/l lSMkS)( )I léNk 1 H H(C( )) r |0>
r=1-1 [,=0
i s_itl#k;
‘Zl N,/ A-1  n-1
=k ! 1NN,
+ (AvisMis + Ay _ixMyi) (=)' On, 10N, 1 H H(cE YN |0>>
r=1-1 1,0
k_i#l #s;
ki
n—1 > Ny A-1  n-1
. ook IONN,
+iY  (AgaMi + AgixMig) (77 oy im0 [T T 10y
! r=1-1 1,20
ki#l#k_;

A final step of relabeling condenses this to

ki

n—1 S Ny A-1 n—1
. dasy F U\Niy
D i (ApaMa + Ay M) (5 Sy o [T T2 105,
s,k r=1-1 1,=0
S_i#l - #k;

which yields the equivalence

ApiuMg + Ay i sMys =0 & Ly diagonalisable . (59)

One recognises this formula as the condition for the Virasoro algebras on different
sheets to commute and give a well-defined total symmetry algebra! Thus, no Jordan
cells for L' are possible via deformations with free b-fields from other sheets. The
summation over sheet labels is necessary, because the new individual Virasoro modes
do not act diagonally on the states. Only the L' give the correct result, e.g. only L§”
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gives the right conformal weight. The L® are “blind” with respect to all modes from
the Ith sheet if k£ # [, so any state not containing modes of sheet k behaves like the
vacuum under the action of L,

To investigate the appearance of Jordan cells for individual Virasoro modes, one
could try to restrict the set of ground states to a certain subspace. For each sheet, say k%,
and each sector with total conformal weight 4", one could choose the states satisfying

hs = h"”ék’s .

Here, I defined the conformal weights 4", h* as the eigenvalues of L{” and L, respec-
tively,
h(s)w = Lg)lﬁ, hzorw = Lz)mlﬁ-

This subspace is assumed to consist of all states satisfying the condition that the con-
formal weights of their constituent modes from the sheets k, k # s, add up to zero
independently. The space of states is obtained as usual by taking the direct sum over
all sheets of lexicographically ordered free-field-descendants of distinct sheets. On
these states, the modified Virasoro modes are considered to act diagonally. Neverthe-
less, one runs into problems considering the action of the ng) even on the ground states.
It embeds the subset with h° = h'¢; ; into its complement in the 4* sector of . This
means that applying the Zg‘) once more gives a contribution from the unmodified Lg‘).
As one can infer from

L0, U901 = 37 1P, 0, 1L KB b,
1

the action of L(()k) after U(()k) on any log-partner of ground states will have contributions

to the total conformal weight which do not add up to zero separetely on individual
sheets, because ﬁ;k) is decomposed by modes from other sheets only. Consider for ex-
ample the action of the deformation on the ground state |¢)_,c]_,c%_;c}_;)

n—1
0 (7O : 0)7.(s) )1.(0)
LE) (LE) - ZIMSO(A/Li,Ob(—i b,('s +Aﬂ,—i,0b(—sib,( )) ‘C(l)—/lci—/lcg—lc/ll—l>
o~
0 0 1.0)
=Ly <(1 — DMoo(Anicro + Agi—a0) BB |9 sel acSoichy)

~
=0, because of (544)

+(1 = DM o (Agac10 ’C?JCLQ +AL1-10 |C}7,16‘371> ))

2 0 .1 10
=1 =)Mo <A/1,,1—1,0 |_icist) — Avicao ‘Cl—/lcll—l>>
One sees, the first state has conformal weight 1 — A with respect to LY, whereas the

second has conformal weight A — 1. It obviously would not help to apply (Lg‘))2 on this
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ground state, because the additional deformation mode just leads to additional terms
proportional to the vacuum.

This behaviour of the new Virasoro modes is not surprising, because the kth con-
formal weight of L® itself is not —n, but a sum of terms with k’th conformal weight
—n,—l—n,l—n, ifk = k" and of 0, [, -/, if kK # k’. One can trace back this behaviour
to the fact that the ansatz for U}(.S) i1s an unnatural choice as well, since its sheet-wise
conformal weight is unequal to its total conformal weight. It is therefore manifest that
the definition of Z(()k) is problematic, the Zﬁf) cease to act diagonally.

This is a further difference to the simple ghost system: There, the individual Lg‘)
would act in a well-defined way on all groundstates, because the conformal weights of
the inserted c-modes are zero. For A > 1, however, exclusive insertions of ¢y-modes
cannot give rise to Jordan cells, since Ly does not contain suitable pairs of by-modes.

The action of the deformed Virasoro modes yields descendants and states with
ghost charge diminished by two. That suggests an indecomposable structure, but due
to the problems with the action of the Virasoro modes in general, this will not be
substantiated further, however, some remarks can be found in [KF03]. An improve-
ment term, which yields well-defined energy operators Lgk) with k € {0,...,n—1},
is described in the next sections, where it is also shown to have an indecomposable
structure.

One can infer from the calculation below that even on hyperelliptic Riemann sur-
faces, such an indecomposable structure is not forced to have filtration length two
[Roh96], if there exist two indices 7,i’,i # i’, for which A,;x # 0 # A, on some
sheet k. If there is a deformation, such two indices exist at least, namely i, —i. As
before, I only consider a product of atomic deformations, to obtain the full, one has to
sum over [ and i’. But of course, it suffices to set i"=—i.

0 (B
U, u, :=

n—1

D (M (= Dm+ DA BB +((A = Dm = DAy g BUD))

m—i —i Ym+i
s=0

r—i’

n—1
XD (Mo(((A = Dr + DA iy B, +(A = Dr = 1)A 1b5)0Y),))
’=0
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n—1

= -3 MyMy, ((u —Dm+ (A= Dr+ DAy A6 60 b,

s5,8’=0
+(A = Dm+ (A= Dr—iNAyix Ap_p kb0 00 pY,
+(A = Dm =)A= Dr+iNAy_ix AyrxbbS b p®,
(A= Dm = (A= 1)yr - i’)AA,_,-,kAA,_,-,,kb(_sl.)b(_sg,)bfﬂib(r?i,)
Even if one fixes m = r and i’ = —i, this product is not forced to be zero, because

at least in the generic case for m and r, the different terms are linearly independent.
It seems pretty obvious that one can find deformations with (U®)* # 0, if s is not
constrained to be s or k.

The deformation of reparametrisation ghosts on hyperelliptic surfaces found in
[KFO03],[FKO03] is not an example of this type of deformation, although it is constructed
similarly. But this model is somewhat special, because the different Virasoro algebras
do not commute with each other. The identification of the additional zero modes was
made ‘cross-over’, such that a certain zero mode would act as an annihilator on one,
and a creator on the other sheet. It seems impossible to generalise their choice to higher
twists.

V A Quadrilinear Deformation

Looking for Jordan cells of well-defined Ly’s, I try to mimic the properties of the
deformation introduced in I1.2.2 for simple ghosts. Recall that on each sheet there was
a pair of zero modes of the Zamolodchikov ghosts. Being the constant terms in the
Laurent expansion, they were interpreted to be present everywhere on the Riemann
sphere without the branch points, i.e. independent of the actual coordinate patch. On
the contrary, zero modes from other ghost systems can be the constants of a Laurent
expansion only locally in the vicinity of a branch point. Inversion of the coordinates
and transition between in- and out-states exchanges the sign of the conformal weight
of the mode which is actually the constant zero mode. For the sake of simplicity, I will
restrict myself to an algebraic point of view in terms of modes. The realisation of this
deformation in terms of fields is left to future work. I redefine U;s) to be

UY = Py, 1 )APbBS,
1

demanding Ags) to be composed out of modes whose sheetwise conformal weight adds
up to zero by pairs, which, of course, implies [Lf)k), Ags)} = 0 for all k, s. Furthermore,
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I stipulate [b9,AY] = [¢,AS] = [LY,A’] = 0 for all s,n. This ansatz should
be understood as assembled from two composite bosonic operators, though it can be
written in the same form as the deformation before. Next to the AE)S) there is the operator
> b\"b?, with modes from the same sheet, determining the total conformal weight.
With these choices the commutator of the deformed Virasoro modes differs by

L0, U9] - [0, U] (60)

X

= P(d,y.1,5) [L, AP =Y P, x,1.7) [LY, AP BB |
1 t
= P(.y.15) ([LY. AP] b"b (1 = 6,) (60a))

)
+(A = Dx = DAPDE) Y5, + (A= Dx =y + DATBIBS)_6,,)

x+HZy=17s.r

=Y P, x, 1,7 (LD, AD] BOBY (1 - 6,,) (60b))
t

+(A = Dy = DASB)BDS,, + (A= Dy — x + AT BB 55,

v+t x—t

from the original one. On may explore the cases r = s and r # s separately, of course.
On the same (r = s) sheet, this gives the conditions

x+y-1

> P(4,y.1,9) (A= Dx = DAPBI B, + (A= Dx =y + DAPDIBS), )
1

=3 P, x,1,5) (A= Dy = DAPBDS, + (A= Dy — x + DAPBBY), )
1

= Z(x — VP, x+y,1, HAFBIBE) . (61)
)

Because every term on the r.h.s. inside the braces of (61) looks promising, we examine
the subset of solutions given below by (62) and (63)

> P4y, 1, 5)((A - Dx = DAPBS), b,
I

, (62)
= P, x, 1, $)(A = D)y = DAGBS) b,
1 !
Py, 1, $)(A = Dx =y + DAPBBY),
and ~P(,x, 1 (A= Dy = x+ DAGBB,
= (x = WP x+y, L HATBIBE) . (63)

The second equation yields (#) with solution (§). Collecting terms contributing to the
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same combinations of modes in (62) gives

x+Hl"y-1 —

ST (P, LA = Dx = D) + P4, x, 1, $)(A = Dy + D) AP b, = 0.
[

This is a special case of (49,) and gives

P(A,y,1,5) = Ay s((A = 1)y + [) which is (£)
A/l,l,s = _A/l,fl,s-

where

(64)

Alternatively one could have shifted / by —x in the second, and by —y in the fourth term.
This leads to a single, more complicated recurrence relation, which will be displayed
in the appendix A. One should note that [ — x + y — [ yields the same mode content.
Due to the increased symmetry eq. (64) implies that there is no deformation LE)S) for
any s. But one can show with an more general reasoning that there is no solution to the
complicated recurrence relation allowing for a deformed L(()“). This will be the topic of
section V.2. To analyse the remaining terms of (60 a, b) which combine modes from
different sheets I impose the ansatz
A(()S) — ZBPSb(P)b(P) )

-1 l

This gives
> P(,y.15) [LY, A BB, = ZP(/l xt,r) [LY, AP 6O, (65)
1

&) Py, LB ((A—Dx+ b, b(’) + (A= Dx = DbbL)) b7b,

x—i"i i Yxti
Li

=Y P x,t,)BY (A= Dy +DbYbY + (A = Dy = Db)BY),) b,

y—i 1 —i Yy+i
t,i

Assorting terms by mode-content leads to

S (@ = Dx+DPAy, L s)B) = BB bObLY, (66)

= (A= 1)y +DP(A, x,t, (B = BB bbY,.

The requisite relabelings can be performed because P(A4, x, 0, r) = 0 for all x, r by (64).
If
0=B - BY = M,
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the deformation vanishes as well. Plugging in ({) and (62) reveals the requirements

A/I,l,sM:s = A/l,t,ersr (67)

Vi,t € {0,---,4—-1}, r,s € {0,...,n—1}. If the A, are chosen to be the same on
all sheets, M;* is a symmetric matrix for all # > 0. Furthermore, if any M;*,A,,, are
non-zero, then A, ;; = 0 & M;" = 0. As before, this implies that some translation op-
erator gets affected by the deformation. The impact of this on the Ward identities will
be investigated in the next section. The above, in particular eq. (67) implies that we
have W independent deformation ‘directions’. (We can choose one indepen-
dent coefficient for any pair of tuples (r, s,¢,1) # (s,r,,t), r,s € {0,...,n—1}, [,t €
{1,...,4— 1} and one for each (r, s,t,1) = (s,r,1,¢).) At first sight, it seems that this
time, one could even adjust these coeflicients such that the global conformal group re-
mains unaltered on the level of individual sheets. But eq. (64) excludes to choose [ = 0
as a starting point. The set of indices / to be summed over then had to be infinite. This
had as a consequence that summands in the deformation term altered the ghost charge
of excited states, while vanishing on their anchestor ground states. Above, I excluded
such implicitly by restricting to A, ;; = 0 if |/| > A.

V.1 The Action on the Space of States

The action of the L* on the ground states is as follows:

A-1 n—1
U9 I TIe 10y =D B A= Dn + Dx (68)
r=1-1 k=0 iLp.l
s A-1 n-1
<! Y, 6n, 100w, 0 TTTT €)™ 10)
r=1-1 k=0

kr@{pi>D-i»S—1-S1-n}

with {ipnkl} counting the number of permutations necessary to group mutually conju-

gate modes next to each other, b’s to the left. I introduced this sign as a shorthand
notation for a lenghthy expression leading to an irrelevant sign. To assure oneself that
it really only leads to an overall sign, I display its precise definition and the calcutation
leading to the above stated

pk
i 1
n

with

a(si—n-1) a(s—-1) a(o-i-1) a(oi-1) :
. 1-S1 n(O' ,k,i,l,n)'l
}=< D YR DR S )Nkf,rf+—g/
kr' kr' k' k,r':
atk;)=a(01-p)  a(k;,)=a01-p) a(k),)=a0i-p) a(k,,)=a(0:-)

Opkidn € ©4 1 Opritn(@(p-i) < opritn(a(pi) < opriin(als)) < opriin(alsn-r)).
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It is useful to note {fpokl} = {lkop"}, because (0 piin) 0dd & (0% p1in) 0dd. But if
i— —iorl— —l, {fpokl} changes by one.

Surprisingly, Lf)s) remains undeformed on any sheet s. This is because of the re-
quirement (62) and its consequence (64). The ansatz for U(()‘c) inherits an additional

symmetry: Terms in Ués) with identical mode contents are obtained by i — —i or
I — —I, whereas for n # 0 itis only i — —i . This implies

n—1

U(S) H H(c(kr))Nk, 10)
r=1-1 k,=
P

=2 (Bf”Aﬂ,z,s(lx—){"p"\'} B AL DO °1})X (69)

i,p,1>0

A-1 -1
k)N, (62) (64)
XOn,10n, 10n,10n, 1 | | H )V |0)

r=1-1 k
ke{p,p,wwl

Thus, Jordan cells are not possible for this deformation. This is true more generally:

V.2 Curiositiesat 1 > 1

In the following, I display some general results on additive redefinitions of the Virasoro
field. However, this section does not deal with OPA deformations. Both, the bilinear
and the quadrilinear deformation have in common a diagonalisable L{”, but in the
former case the full theory is the only well-defined. The quadrilinear deformation
being well-defined even on individual sheets in turn implies Ly to be diagonalizable
even on individual sheets. This is a general feature of the higher spin ghost systems,
which can be seen from the Virasoro constraints for a particular choice of modes:

(L0, U9 = (LY, UP] £ x - UYs,,. (70)
U'" is restricted to be composed out of b-modes such that
—X0,,

to render the action on at least a restricted space of states welldefined, i.e. one imposes

the condition that LT”O has to act as the energy operator. This enables us to calculate
[LY, UV] = —x - UVS,,. This obviously yields

[, U(S)] =0 Vxifr=s.
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In my framework, this set of equations generically requires U(()s) to be zero. Exemptions
are

e deformations by b-zero-modes of conformal weight zero for A = 1, because
(LS, b1 = ((0)x = 0)b5, = 0,
which characterises, as expected, the well known ¢ = —2 LCFT deformation.'?

It is impossible to achieve the same within other ghost systems than ¢ = -2, using
monomials in b-modes of finite degree. An attempt to write something down like
this yields the condition that all modes from a distinct sheet have to be present in
the product, if any modes are present. This is not a product of finitely many modes,
and obviously not well-defined: Any permutation of modes times its signature is an
identity, but the sum over all integers is not absolutely convergent.

A similar reasoning forbids Jordan cells for L{”’, even if they are present on indi-
vidual sheets due to the relinquishment of a consistent action of the individual LE)S).
Because it is to be required to act as the energy operator, L has to count the correct
total conformal weight. For that reason, all U’ have —x as total conformal weight.
The constraint for the total Virasoro algebra reads

SO, U= ST, U0 = 2y U, (71)

r,s r,s

This again requires [L'”, U¥'] = 0. I will now make use of the primarity of b and c,

[L§F>, "] = (A — 1)y — x)b") &, [LY, cD] = —(Ay + 2)c) b, (72)

y+x 'y X y+x

with respect to the old Virasoro modes. (Note that the improvement terms do not need
to respect primarity, in particular, of the ¢’s.) If there are nontrivial contributions from
[Lgf), U{'], which cancel in the sum over sheet-labels, the contributions from different
sheets have to cancel each other in U as well. Consider:

1Ly, (LY, U] = =LY, (U, LO1] = (UG LY, L]
(45) r 0 0 r
= ~[LY, (L5, U = U, (=08, L]
In the first line, I used the Jacobi identity. Because LY’ counts the total conformal
weight of U, ) which at least must be required to be well-defined, the first term van-
ishes. This implies that [Lfr’), Uy'] has conformal weight (—x)d,, on the tth sheet.
Therefore [L, Uy = 0, if and only if for all u

(LY, Ug'] = 0,

12This also implies that we cannot find other additive deformations of the Virasoro field which have
Jordan cells with rank greater than two, because the deformation of Lff) then at least has to contain b((f)
as an overall factor. Otherwise the individual Virasoro algebras are either trivially deformed, or do not
commute.
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because [L", U¥'] has different quantum numbers (namely h( ) for u # r.

(u) mr]
Apart from the exceptions made above for ¢ = -2, U{” has to vanish in my frame-
work. Thus, if a deformation, which is decomposed by b-modes only, is required to
yield an energy operator, it cannot have Jordan cells.
A further rationale shows that for deformations also containing c-modes, at least a
weakened condition holds:

Z Lo, Ul - Z[L@), U +Z[U¥)’ I XZU)(CS)

r,s

=4

Z[L(r) U(s) [Lrot U(t)or] -0 Z[U)(cr)’ U(()s)] -0

In section I'V.1 it was already shown that an ansatz containing c-modes cannot be linear.
Because of that, the second equation in the second line holds true as well, because
the terms in the first line have unequal mode contents. The above exceptions are not
present in this case, because the c-modes transform according to the second part of
(72). This implies in particular that for any s the Ués) have to reside in the center of the
new Virasoro algebra on the sth sheet.

Nevertheless, because the maximally extended algebra is not known, I cannot de-
cide whether U((f) has to commute with its generators. Therefore I do not conclude that
Jordan cells are forbidden in a larger algebra, although there can be no Jordan cells
with respect to LI, as long as it is required to measure the conformal weight correctly.

V.2.1 Surprising Indecomposable Structures

Although there are no Jordan cells possible for the energy operators, there indeed are
indecomposable structures. The action of the deformed Virasoro creation modes on
Vie-primary, free-field-descendants with conformal weight zero yields Virasoro de-
scendants with the original ghost charge plus a sum of Virasoro primaries of lesser
charge. All terms are of the same level. Because the symmetry with respect to the
lower indices, which excluded Jordan cells eq. (69) exists only for n = 0, summation
over sheet-labels does not affect this indecomposable structure.

This becomes obvious by considering that there are states cf}cﬂc(’)c(’)c<~‘>>, with

r # s, 1,isuitable for the choice of the parameters A, which get mapped to ‘C(§)>

by the action of U. In particular, |C (E)>, which is thought to be an arbitrary product
of c-modes from the other sheets, can be chosen to be the SL(2, C) invariant (total)
vacuum. Therefore, there is one module on every sheet, which contains the irreducible

vacuum module as a submodule. The vacuum module is unaltered by the transition to
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the deformed Virasoro algebra, because the whole vacuum module is invariant under
U for all r. With respect to the old Virasoro modes, all ground states with equal ghost
charge are contained in the same conformal family. With respect to the new Virasoro
modes, all ground states with the equal ghost charge modulo four are contained in the
one indecomposable module, but only the vacuum vector is a heighest weight vector.
The vectors with sth weights j1 — w, j® < A — 1 are the quasi-primary states
with ghost charge j* on which the indecomposable representations are built. This
shown more explicit in the subsequent section.

Remark: The modified Virasoro-modes do not commute with the current-zero-

mode, instead

=171

(I, UL = 2UL 6, + 2> BIA (= D+ DbIbP PP (1 = 610)

as long as modes from the Ith sheet contribute to U®(z), i.e. as long as for some i, Bi¥
is non-zero. In contrast to an LCFT with the usual Jordan cells, the Hilbert space in my
deformed theories with A > 1 is graded with respect to the energy operators. However,
in contrast to usual CFT, the representations of the ghost charge do not coincide with
the modules of the deformed Virasoro modes in the setting described before.

V.3 Logarithmic Ward Identities Revisited?

One may now ask whether there are highest weight states or states corresponding to
quasi-primary fields except for the vacuum. With respect to the total old Virasoro
algebra, only the sl(2, C)-invariant vacuum is a highest weight state. Every state, which
satisfies the condition that

N, =1= Ny, =1 (73)

for any of its occupation numbers, is quasi-primary with respect to the individual old
Virasoro modes Pit'?),.

To investigate which states /) are quasi-primary with respect to the new Virasoro
modes L; ) = 0, it suffices to look for states, satisfying eq. (73), which remain in-
variant under the deformation mode U ES). Because the deformation lowers the mode
content, both the Virasoro and the deformation term with conformal weight —1 have to
vanish separately on these states. Needless to say that I do not refer to the case where

the global conformal group is chosen to be undeformed. Evidently U ES) vanishes on

states which have the form W(S)> |O(/S\)>, 1.e. where only modes from the present sheet
contribute. Apart from that it suffices to consider only the part }lﬁ(”> on the actual
sheet 5. By eq. (68) it follows that for all s the action of U f) vanishes on states that do

not simultaneously contain c(fl) and c§i>1 .

50



This leads to the conclusion that states which contain only modes with conformal
weights < 0 on the significant sheet, and that satisfy the condition eq. (73), are quasi-
primary with respect to the new Virasoro modes.

Now consider U™ ©. By the same reasoning as before, it will vanish on all states
which do not mmultaneously contain c( $) and c}i)l. But, obviously, there is a gap, the
product of modes c(()s)c(ls) vanishes under the action of U, but it could give a non-
zero result under the action of U_,, even in suitable Vit,; quasi-primary combinations
with other modes. On the contrary, there are no inhomogeneities possible in the Ward
identity corresponding to Lo, and there could exist quasi-primary fields satisfying ho-
mogeneous differential equations derived from £ _;, which then necessarily satisfy ho-
mogeneous differential equation with respect to £;. The inverse of the last statement is
not true. There are quasi-primary fields, i.e. which enjoy homogeneous Ward identity
involving £, but have inhomogeneities with £_;. An example is a field corresponding

to ’go(/s\)> ® \cé”cﬁ”), with ‘go(/s\)> containing at least one pair c)c?” r # 5, A, M!* # 0
for at least one /.

To my knowledge, it was conventional to assume LCFTs to contain only represen-
tations which comprise ‘standard’ Jordan cells, i.e. there is one primary field and r — 1

quasi-primary ‘logarithmic partner field’, such that
Lo |hy) =hy |hy) + (1 =) sk =1y ke€{0,...,r—1}.

Here, r denotes the rank of the Jordan cell. The Ward identities for logarithmic partner
fields containing the operators Lo , Llog become inhomogenous in this case

LyGGrenza) = Y 0iG(z1s.,2) = 0
LoG (s -n2) = Y @i+ hi + 8,)G(, ..., 2,) =0 (74)

LiGGi...oz) = Y _(@20; +22lhi + 5,)G 1, ... 20) = 0

where G(z1, ..., 20) = (Wt @) - - Whoi(20)) and 85, W) = 6% i1y O Y0y =
0.

These logarithmic Ward identities had to be modified further for the models studied
in this and the preceeding section. This observation sets us in the position to see an
effect of the extraordinary structure of the ‘logarithmically’ extended ghost theories for
1 < A2 € N. To summarise, the indecomposable structures one encounters here have
the property that Lo is unaltered (and thus blind with respect to the indecomposable
structure), and suitable states are annihilated by Ll, but not by L | at the same time. In
particular, the indecomposable structure becomes visible in the action of L_l, or U_y,
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respectively. This is a completely different and new sort of indecomposable represen-
tation (to LCFT), since the ordinary Jordan-cell-type representations are distinguished
by the feature that L_; remains undeformed.

Figure 3: Action of some of the quadrilinear Virasoro modes on a quasiprimary state.
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VI Discussion

VI.1 Remarks on Hermiticity

The combination of »-modes contained in the deformation of simple ghosts is antiher-
mitian (bgs)bﬁf))1 = b)) = —bPb"). This resembles the deformation by free fields
for A > 1, but for these, the prefactor P(A4,y, [, s) is mandatory, which on the one hand
excludes deformation terms by modes with conformal weight only, and on the other
hand, allows to chose the hermiticity properties of the deformation

Ul = PGy LB ) =Y PGy Ls): bl B
) )
==Y PGy, ~Ls): Bib*y =Y AG L) — DY) +1D) : Biboy
1 1

The deformation is antihermitian if A(j,[,s) = —A(j, -/, 5). (544) then implies that
M,; = =M and analogously for hermitian deformations. Eq. (54) reveals that it can
be chosen such that the deformation is either hermitian or antihermitian. As usual in
CFT, (L)' = LY and j®" = —j) 1t is still possible that with respect to a (modi-
fied) ghost current, states organise into more common indecomposable structures. In
particular, due to the anti-hermicity of j(z) opposed to the hermicity of 7(z), j, might
possibly admit a logarithmic deformation. Some WZW models are already known to
have currents exhibiting Jordan cells, the Virasoro fields built out of these currents
nevertheless acts diagonalisable. However, an investigation of whether ghost systems
admit for similar structures is left to future work. One could be tempted to infer that
the deformation U(()S) has to be antihermitian to render the matrix representation of LE)S)
non-diagonalisable. This contradicts the observation that Jordan cells arise in the ma-
trix representation of L((f) regardless of its hermiticity properties. This contradiction
is easily resolved by recalling that the vacuum has zero norm, because the pairing
is non-trivial. Because the current is anomalous, any non-zero correlation function
has to contain n(21 — 1) creation zero modes in excess. The appropriate outstate for
the sl(2, C)-invariant vacuum has to comprise these. Therefore, hermiticity, and its
converse, becomes a completely formal concept, which cannot be used to predict in-
decomposable structures at all. The quadrilinear deformation has a distinct hermicity
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property

A(S” ZBps b(p)’i'b(_zz_)'i' — ZBfS*b(j-)b,('p) — Aés)

1—yP—1

) : ZP(A v Ly BYBTA = P,y 1, b BEAY
l
= = A= Dy = DbP"bO)_ AL = Ay (A= 1D)((=y) + DAYBIBC)
l

_ _77®
uv.

VI.2 Interpretation of the Results of section V.2

One could interpret the vanishing of the deformation of L, and the modification of the
action of L_; on some quasi-primary states as follows: In theories compactified on the
torus, the generators of the global conformal group still act as differential operators,
L;,i € {—1,0, 1} corresponding to translations, scalings and special conformal trans-
formations, on quasi-primary fields. But the transformation to the new coordinates for
radial quantisation maps scalings, translations and special conformal transformations
not separately onto themselves, but only the whole group. A rotation in the old co-
ordinates, generated by L, corresponds to a translation in the new and £, generates
rotations instead. It is worth noting in this context that for ghost theories with inte-
gral spin 4 > 1, we only know applications — namely, the bosonic string — where the
worldsheet is naturally compactified on a torus (in light-cone coordinates), in contrast
to condensed matter applications of ¢ = —2, which naturally live on the complex plane.

One could speculate that indeed these theories may have applications only in cases,
where in some sense the indecomposable structure manifests itself in the action on
the space of states of the generator of rotations, whereas the translation operator acts
diagonalisable.

VII Summary

In section III.1, I constructed a logarithmic extension of the ¢ = —2 model for arbi-
trary twists by adding ‘improvement’ terms U® := :30p®): to the Virasoro modes
as a straightforward generalisation of the construction in [FFH*02]. T required the
improvement modes to reside in the universal covering of the ghost-mode algebra. 1
found this to be possible if 4 satisfies {f®, 5} = {B®, b/} = {p®, ™} = 0 for
all k,m,e {0,...,n—1}, [€Z,and, if k # m, for all r € Z \ {0}. The upper index
in braces counts the sheets of a ramified covering on the Riemann sphere. I explicitly
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investigated the action on the space of states of the ansatz

n—1
B = S M.

s=0

The action of the modified energy operators Zg"), k € {0,...,n— 1}, on the space of
ground states shows the desired rank 2 Jordan cells.

I showed that the simple ghost system is the only fermionic ghost system that al-
lows for this construction. Rank 2 Jordan cells could furthermore be shown to be
possible if and only if the ansatz for § is a sum of products of weight-zero h-modes
from different sheets.

In section 1V, I developed a general construction to extend arbitrary fermionic
ghost system CFTs to contain indecomposable representations. The deformation

UY :=> P,y 1, )B"b,

le7.

was shown to be subject to the following consistency conditions (A, := P(4,0,1, 5)):

P(4,0,L,s)-(A=1)-x+D)=1-PA,x15) (W)

ApsAame {87,820} Blinear in b, ¢
A’u’s {C%)’ﬂgs)} + A/l,m,r {CES)’ﬂ;(;) = { sEsAmr { }

m

(%)

0 otherwise
{869} =0

n—1
5") 1= ZMksbgk) the second set of consistency conditions

k=0

For the more explicit ansatz 8

reduces to '
MrsA/l,l,s + MsrA/l,fl,r =0 (54)

But the individual Lg‘) do not measure the conformal weight of the states correctly,
hence they cannot be interpreted as energy operators on te single sheets. Only the
sum L' can as the energy operator for the tensor product of the theories on the distinct
sheets. By eq. (54), Ly is diagonalisable. Above that, this deformation admits a whole
subalgebra Zg”t), ng’ ) of the Virasoro algebra to be left undeformed.

In order to find improvement terms on the individual sheets with a well-defined
action on the states, I scrutinised a further ansatz consisting of composite bosonic
operators in section V

U = S Py, L 9AT BB,
1
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In analogy with the ¢ = -2 case I demanded
[9,A5] = [, Ay] = [LY,Ay'] = 0

for all s, n. Then, the solution of (#), i.e. (3), is still a solution if in addition

A/l,l,s = _A/l,—l,s (64)
holds true. Specifying to AS := S° M”*b%p" T found
i>0,p
ApisM? = A M) (67)

as sufficient condition for the ansatz to yield commuting Virasoro algebras.

Furthermore, I proved that the requirements of the deformed Virasoro-zero-mode
to be an energy operator and S to be a member of the universal enveloping algebra of
the b-modes of the whole Riemann surface suffice to exclude Jordan cells for L' T
studied the action on an augmented space of states and showed that the action never-
theless is indecomposable. I found quasi-primary states on which L_; acts differently
than reckoned before: Any state, whose occupation numbers satisfy

Ns ;=0 VvV Ny =0,

vanishes under the action of USI)

UL w0y Icy=0 v |C¥).

-l _
In particular, on any sheet s, the quasiprimary states [ ‘C,@> |IC®) vanish under U!",
i=1

but not under U(_sl). Here, |C®> denotes an arbitrary state with insertions of c-zero
modes from sheets other that s. Thus, the global conformal Ward identities have to be
altered further for the general case. Hence, the specific conditions, under which the
LCFT Ward identities could originally be derived, were necessary indeed.

I constructed a further deformation with higher nilpotence index which is a gen-
eralisation to the former ansatz and might prove useful in special applications. In the
appendix B, a similar bosonic ansatz with

A(S) ZM(S h)H b(P)b(P)

h>0 D#ES

will be displayed. It leads to the requirements A, , M(r, l)Nl(,';) = Ay sM(s, h)N, N

h,re
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VIII Outlook

A very interesting question arising from above is whether the deformations found
above are consistent with different extensions of the Virasoro algebra. This could
be the maximally extended “W-algebra, or a superextension. It is unclear whether for
A > 1 there could be extended algebras which admit Jordan cells for the zero modes of
other generators.

Furthermore, it remains to be investigated whether the indecomposable structures
found for higher spin A, which lack Jordan cells, lead to logarithmic singularities in
correlators. A possibility to verify this would be to find a modified current 7'(") (z) which
is consistent with T7®(z) = 3 FRT0 () + - 8 jP(z). If one were able to show that
70 had Jordan cells, the theory would clearly exhibit logarithmic divergencies. Also,
if the zero mode of this current was to commute with all Virasoro modes, ]~'0 would
respect the Zo—grading of the Hilbert space. This would imply that L, maps states to
sums of states which reside in different superselection sectors. This also would be
a proof for the theory to be logarithmic. Further examination of the anomaly of the
current j and, if found, the deformed current j, seems to be necessary.

Another interesting question would be to explore the antiperiodic sector, and, in
particular, the Ramond sector of the fermionic ‘ghost’ systems with half-integer spin
A. It is as yet unclear whether the twist remains primary with respect to the modi-
fied Virasoro modes. Because it has no mode decomposition except in the bosonic
language, which proved not to be trustworthy by [Gur93], one would have to use the
twisted Borcherd identity of [EFH98] to decide that. Particularly exciting would be a
bosonisation scheme of the twists which is compatible with the OPE.
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A The Long Recurrence Relation

To check whether something went wrong or whether there is a further obvious solution,
I redo the calculation with the “big” recurrence relation, collecting the coefficients of
distinct combinations of modes:

{P(A,m,(l—n),k)(An—1) —PA,m,(m=10,k)((1-1)n—m+1)
+PA,m LE)((A-—1n—m+]) —PUAmm+m—10,k)(1—1n—1+n)
—P(A,n,(l —m),k)(Am - ) +P(A,n,(n—=10,k)((1-1)ym—-—n+1)

—PA,n,LEK(A—1Dm—-n+D+PA,n,(n+m—10,k)((1—-1Dm—1+m)}
é(n —m){PA, (n+m), L k) —P(A, (n+m),(n+m-=1),k)}

My solution from the short recurrence relation obviously solves it.

{Ar e = Dm+ 1= n)(An = 1) = Ayguepp(Am = D((A = Dn —m + 1)
+A (A= Dm+ D((A - Dn—m+ 1) — Ay im-pi(Am +n — 1)(An — 1)
—Aemyp (A= D+ 1 —=m)(Am — 1) + Ay r-p(An = D((A = D)m —n + 1)
~Ap((A=Dn+D(A—-Dm—-n+1)+ Ay em—npi(An +m— [)(Am — l)}
= { Ay (A = Dm + L= n)(An = 1) + Ay gy (Am = D((A = Dn —m + 1)
+A (A= Dm+ D((A - Dn—m+ 1) — Ay im-pi(Am +n — 1)(An — 1)
—Aemyp (A= Dn+ 1 —=m)(Am — 1) — Ay gy (An = D((A = Dm —n + 1)
~Ap((A=Dn+D(A—-Dm—-n+1)+ Ay em—npi(An +m — [)(Am — l)}

= (1= m) {Aga((A = D)@+ m) + ) =Ayum-ni (A +m) = )}
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B A Bosonic Deformation with Lower Nilpotence In-
dex

The deformations discussed above have in common that their nilpotence indices vary
with the number of sheets on which the Virasoro field is being deformed. If one is
interested in deformations which are nilpotent of a certain lower order one should
increase the zero mode content with positive ghost charge of the deformation term.
This can be done with a product rather than a sum ansatz: Because commutators with
Virasoro modes act derivatively on products, the constraints happen to be quite similar
to those obtained from the quadrilinear deformation. The calculations of section V for
equal sheet-labels r = s remain valid, but I redo the cases r # s by setting A’gﬂ to be
AY = M(s)T] (b(_@)bfp))Nf-?, This gives

i>0,p
P#s

0= ZP(/L .1, s) [L;”,Kf;)] BB, - ZP(/L X, 1,7) [Lg;”,}{g’)] POBD(75)

= ZP(/I v, 1, )M(s)((A — Dx + a)b? b(’) + (A= Dx—a)p0)bs)) - NObPBY,

X—a-a —a~ a+x

H ((b(")b(r)) N(S) (b(P)b(P)))Nm

-1 l

i>0,p,
P#S

=3 P, x,t, DM(r)(((A = D)y + b)b, by + (A = Dy = b)b)bg) ) - NbBY,
b>0,t

TN A 0
[ TS0,y - N b)),

-7
i>0,p,

P#E
Where the hat denotes that the modes have been removed by the action of the Virasoro
modes. The second and fourth line have to be prefactors of the same products, which
have to cancel each other. The third and the fifth line are the same, if from every sheet r
at most one pair of modes with the equal conformal weights, say h and —h, contributes
to the product, i.e. if N (:,) has the form N;, ) = 0in(1 = 6,,). Because of that, it seems to

be more feasible to call A(S) A(S)(h) and redefine A(S) to be

A(S) ZM(S h)H b(P)b(P) hp

h>0 D#S

59



By relabeling one obtains

> Py, 1, )M(s, (A= Dx + b2, by + (A = Dx — Wb )by INSBPBY,

h+x/* Y h,r
h>0,1
GIENYE ¥
[T@OBDN G5 b)) (76)
= P LM (A= Dy + Wb + (A= Dy = b ONb b,
h>0,1

) 1.0 r (@)
| (CRRI A CA FOV D

After the domain of summation has been split, the coeflicients, i.e. the first and third
line above, read:

0= Y P(y.Ls)M(s, )(((A— Dx + h)b, b)) - NybPDY, s
h>0,1>0
= > P, X, LM, (A= 1)y + b, by - Nb b, .
h>0,1>0
+ > P4y, L )M(s, ))(((A = Dx = Wb ) - NP, :
h>0,>0
= > P LM R = )y = bbL) - Nyb b, o
h>0,1>0
=) Py, L )M(s, h)(((A = Dx + bT b)) - NIB by o
h>0,/<0
+ D PO, LM (A= 1y + Wb, by - Ny by .
h>0,1<0
= > Py, L )M(s, (A = Dx = b)) - Ny by .
h>0,1<0
+ > PQLx LM (A= 1)y = b)) - NOBY b)) .
h>0,/<0

Equal tokens indicate that different terms comprise the same mode-contents. Because
of eq. (64) one does not need to include terms with / = 0 into the sum in order to
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make the above equation valid. For all # > 0 and all / # 0 as well as (x,y) € Z? and

(r,8) €[0,...,n—1]%it leads e.g."? to the requirements
= > PLx, LM (A= Dy = bbS),) - Nyb b,
h>0,/>0
_ _ _ (r) 3,(r) (8)7,(5) 7,(5)
= > Py, =L s)M(s, h)((A = Dx + Wb, by - Nb) b,
h>0,[>0
thus
—P(A, x, h, )M (r, DN, (A = 1)y = ])
= P(A,y, =1, )M (s, DN, (A = Dx + h),
which implies
A M(r, DN = —Ay_1;M(s, )N},
By eq. (64) this becomes, finally
A M(r, DN = Ay ;M(s, )N}, (77)

Although the calculations are nearly identical to the case before, there is an impor-
tant difference: The nilpotence index can be lowered without the need to restrict to a
certain number of different contributing zero modes. This could be interesting if one
does not want quadratic contributions of the deformation in normal ordered products
of the new Virasoro modes, e.g. if one tries to keep generators of an extension to a
“W-algebra.

Of course, linear combinations of terms characterised by > ) N}(fl),
as well, if the above condition are met for every power in b-modes.

= m are possible

C Some Words about the Notion of Zero Modes

Having specified a positive definite metric, tensors on X can be written as section of a
line bundle K. Then, the covariant derivative acts as

V¢ — Vg71)¢ + V§f11)¢

on sections ¢ € K. V" is the Cauchy-Riemann operator. Sections in K" can be
identified with those of K™ ™ The Laplacians then read

_ y m) - _ m—1)7y
AL, = -2V V; A, = —2V§, Vi (78)

(m+1)

3There are four sets of equations, which lead to identical results.
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with
Vi - K" =K"™" V6= (85)" ¢ ® (dy)”!
Vgn) . Km _)Km+1 V;m)(b — (gn_)ma\_(gw_)—m(ﬁ ® dy

The Riemann-Roch-Atiyah-Singer theorem states
: 1
dim KerV{" — dimKerVy,,,, = (m + 3 w@) = Q2m—1)1-g).

That implies that at least the number on the r.h.s (the index of the Cauchy-Riemann
operator) of zero modes have to be included into the path integral. Only for g = 1 one
has to include all b- and c-zero modes, in the other cases, one has to include exactly
the number the index dictates.

D Vertex Operators and Vertex Operator Algebras

I want to note here that a meromorphic CFT fulfills the axioms of a vertex operator
algebra (VOA). For meromorphic CFTs it provides a very powerful and condensed
formulation. To my knowledge a similarly stringent formulation for non-meromorphic
or even logarithmic settings is a field of active research.

A vertex operator algebra B is determined by the following data [FLM]:

1. aZ-graded Vector space V = @V", V" finite dimensional and homogeneous
nez.

2. Two distinct elements |0) € V°, L, |0) € V?
3. A distinguished endomorphism L_; € End(V) with L_; |0) = 0.

4. A field-state-correspondence: A linear mapping Y(-,z) : V — End(W)[z,z ',
z being a formal variable.

satisfying the following relations
1. Y(|0),z) = 1y as well as Y(¢,2)|0) € ¢ + zV[z]] V¢ € V.

2. Y(L110),2)=T@) =), L,z "% The Virasoro field has a mode expansion, the
modes of which satisfy the Virasoro algebra

clq+1
[an Lm] = (q - m)Lq+m + 5( 3 )6q+m,0

(L, ¢]=0YgeZ
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3. The field-state correspondence is compatible with the grading: ¢_,, which is a
mode of the expansion Y(¢,2) = >, ¢,z ", is a mapping from V™ to V™.

4. Vo eV :Y(L 16,2) = Y(d,2).

5. Vectors of V enjoy a locality property: V¢, ¢ € V ANy, € N :
(Z - W)NM, |:Y(¢’ Z)’ Y(l/” W)j| =0.

Wilson proved that a theory can be characterised equivalently by fixing equal-time
commutators or by specifying ann operator product algebra (OPA). In the latter case,
one fixes a (finite) basis of so-called ‘simple’ fields and demands that all fields of
the theory are contained in the vector space, which is spanned by them and all words
in coordinate derivatives and normalordered products applied to them. This space
of fields is assumed to close under a certain product, the operator product expansion
(OPE), which is specified by other requirements of the theory, such as associativity,
locality, Lorentz or conformal covariance . . . The OPA formulation is most appropriate
and convenient in two dimensional CFT, because the additional symmetry causes the
OPE of simple fields to close within themselves. For that reason, two- and three-point-
functions could in principle be calculated exactly by the so-called bootstrap approach.

$i2)9,0) = > _Cliz =)
k
and the associativity

(@)D NPL(X) = Bi(2)(P;()pu(x)) =
> €l = ))Chy (5 = D(X) =Y Cijplz = X)Citp(y = X))
Pl

pil

k I
k I
p =Z P’ ;
Z CklpCij p - Cki Cljp’ p
P P
i J
i J

Here, I briefly review the approach of Fjelstad et al., because some of their concepts
proved very useful to our approach and its motivation.

It was already mentioned that in a first step, they enlarged the space of states by
taking the tensor product with a finite dimensional vector space K. Thereby, the Vira-
soro modes get improved by an operator S € End_K times a recognised mode. Then,
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the whole OPA is deformed by applying a superderivation on it. Under certain circum-
stances, this is an isomorphism of OPAs, and the improvement modes of the Virasoro
field are obtained by expressing it in terms of the deformed basic fields. They de-
form Operator Product Algebras, i.e. graded (super-) vector spaces with a collection of
bilinear operations

[ ] : VXV —>V VYneZ. (79)

which respect grading and associativity. They define a mapping

A VXV — Ve Clz 2 llogz)]
(E.A) - AgA = [E, Al log(z) + 3 U (Bl

n>1

treating log(z) as a new formal variable. To fix a field in the first factor renders the
map a superderivation on the second. They introduce an auxiliary vector space K and
take the tensor product with the old space of states V ® K, such that for a distinct state
w € K, Qp®w = Q is the vacuum of the enlarged stace of states. They define
End,(K) = {8 : fw = 0} and End(K) = End,(K) + End_(K). Then they consider the
mapping

A — exp(BAE)A B € EndK

They observe that if either E or § are nilpotent, e.g. E, 8 fermionic, the mapping is an
isomorphism of OPA’s (and the exponential becomes a finite sum). They observe that
if and only if E is chosen to be a (fermionic) screening current, no logarithms occur in
the deformed fields. In this case, §E is the differential in a complex. Because the pris-
tine and the deformed OPA are isomorphic under the afore-mentioned circumstances,
deformed composite fields (like the Virasoro field) are obtained by composition of the
corresponding deformed basic fields, i.e. the deformation commutes with expanding
operator products. The choice of the annihilation mode to be nilpotent renders the
exponential a polynomial, in their case, a linear one. By this OPA deformation the
deformed Virasoro field T'(z) + ;822 is obtained as usual in CFT, but is composed out
of the deformed basic fields. -

References

[AGBM*87] Arvarez-GaumE, Luis ; Bost, J. B. ; Moorg, Gregory W. ; NELSON,
Philip ; Vara, Cumrun: Bosonization on higher genus Riemann surfaces.
In: Commun. Math. Phys. 112 (1987), S. 503

[AGMNS86] Arvarez-Gaume, Luis ; Moorg, Gregory W. ; NeLson, Philip: Bosoniza-
tion in arbitrary genus. In: Phys. Lett. B178 (1986), S. 41-47

64



[BPZ84]

[DFMS97]

[d’H99]

[EFH98]

[Fad99]

[FF]

[FF83]

[FFH*02]

[FK80]

[FKO3]

[FLM]

[Floa]
[Flob]

BeLavin, A. A. ; Porvakov, A. M. ; ZamoLopcHikov, A. B.: Infinite
conformal symmetry in two-dimensional quantum field theory. In: Nucl.
Phys. B241 (1984), S. 333-380

D1 Francesco, P. ; MatHieu, P. ; SENecHAL, D.: Conformal field theory.
second. New York, USA : Springer, 1997. — 890 S

p’HokER, Eric: String Theory. In: Quantum fields and strings: a course
for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997). Providence,
RI : Amer. Math. Soc., 1999, S. 807-1011

Enorzer, W. ; FeHEr, L. ; HoNECKER, A.: Ghost systems: A vertex
algebra point of view. In: Nucl. Phys. B518 (1998), S. 669-688

Fapeev, Lyudvig D.: Elementary Introduction to Quantum Field Theory.
In: Quantum fields and strings: a course for mathematicians, Vol. 1, 2
(Princeton, NJ, 1996/1997). Providence, RI : Amer. Math. Soc., 1999,
S. 513-550

FriciN, B. L. ; Fucus, D. B..  VERMA MODULES OVER THE VI-
RASORO ALGEBRA. . - PREPRINT - FEIGIN, B.L. (REC.OCT.88)
16p

Feicin, B. L. ; Fuks, D. B.: Verma modules over the Virasoro algebra.
In: Funct. Anal. Appl. 17 (1983), S. 241-241

FieLstap, J. ; Fucns, J. ; Hwang, S. ; SEMikHATOV, A. M. ; Treuniy, 1. Y.:
Logarithmic conformal field theories via logarithmic deformations. In:
Nucl. Phys. B633 (2002), S. 379413

Farkas, H. M. ; Kra, L.: Riemann Surfaces. New York : Springer-Verlag,
1980. - 332 S

Fronr, Michael ; Kroun, Marco: Operator product expansion and zero
mode structure in logarithmic CFT. (2003)

FrENKEL, 1. ; LEPOWSKY, J. ; MEURMAN, A.: VERTEX OPERATOR AL-
GEBRAS AND THE MONSTER. . - BOSTON, USA: ACADEMIC
(1988) 508 P. (PURE AND APPLIED MATHEMATICS, 134)

FLour, Michael A. 1. Private Communication

FLonr, Michael A. I.: The Rational conformal quantum field theories in
two- dimensions with effective central charge ¢, < 1. . — BONN-IR-
94-11

65



[Flo94]

[Flo96]

[Flo02]

[FloO3]

[FIRO3]

[FQS84]

[FSQB86]

[Gab00]

[Gab03]

[GGOO]

[Gin88]

[GK96]

[GK99]

Fronr, Michael A. I.: Curiosities at ¢,y = 1. In: Mod. Phys. Lett. A9
(1994), S. 1071-1082

Fronr, Michael A. I.: On Modular Invariant Partition Functions of Con-
formal Field Theories with Logarithmic Operators. In: Int. J. Mod. Phys.
Al1 (1996), S. 41474172

FLonr, Michael: Operator product expansion in logarithmic conformal
field theory. In: Nucl. Phys. B634 (2002), S. 511-545

FLonr, Michael: Bits and pieces in logarithmic conformal field theory.
In: Int. J. Mod. Phys. A18 (2003), S. 4497-4592

Logarithmic conformal field theory and its applications. Singapore :
World Scientific, 2003. — School and Workshop on Logarithmic Confor-
mal Field Theory, Tehran, Iran, 4-18 Sep 2001

Friepan, Daniel ; Qru, Zong-an ; SHENKER, Stephen H.: CONFORMAL
INVARIANCE, UNITARITY AND TWO-DIMENSIONAL CRITICAL
EXPONENTS. In: Phys. Rev. Lett. 52 (1984), S. 1575-1578

FrieDAN, Daniel ; SHENKER, Stephen H. ; Qru, Zong-an: DETAILS OF
THE NONUNITARITY PROOF FOR HIGHEST WEIGHT REPRE-
SENTATIONS OF THE VIRASORO ALGEBRA. In: Commun. Math.
Phys. 107 (1986), S. 535

GaBeRDIEL, Matthias R.: An introduction to conformal field theory. In:
Rept. Prog. Phys. 63 (2000), S. 607

GaBERDIEL, Matthias R.: An algebraic approach to logarithmic conformal
field theory. In: Int. J. Mod. Phys. A18 (2003), S. 4593—-4638

GABERDIEL, Matthias R. ; Gopparp, Peter: Axiomatic conformal field
theory. In: Commun. Math. Phys. 209 (2000), S. 549

GinspARG, Paul: APPLIED CONFORMAL FIELD THEORY. In: Lec-
tures given at Les Houches Summer School in Theoretical Physics Les
Houches, 1988

GaBerDIEL, Matthias R. ; KauscH, Horst G.: Indecomposable Fusion
Products. In: Nucl. Phys. B477 (1996), S. 293-318

GaBERDIEL, Matthias R. ; Kausch, Horst G.: A local logarithmic confor-
mal field theory. In: Nucl. Phys. B538 (1999), S. 631-658

66



[GKOS85]

[GKO86]

[GSW]

[GT89]

[Gur93]

[Kau91]

[Kau95]
[Kau00]

[Kaw03]

[KFO3]

[KL98]

[Kni&7]

[KRS7]

GopbArp, P. ; Kent, A. ; OLive, David I.:  VIRASORO ALGEBRAS
AND COSET SPACE MODELS. In: Phys. Lett. B152 (1985), S. 88

GoppARD, P. ; KenT, A. ; OLive, David I.:. UNITARY REPRESENTA-
TIONS OF THE VIRASORO AND SUPERVIRASORO ALGEBRAS.
In: Commun. Math. Phys. 103 (1986), S. 105

GREEN, Michael B. ; Scawarz, J. H. ; WitTeEN, Edward: SUPERSTRING
THEORY. VOL. 1: INTRODUCTION. — Cambridge, Uk: Univ. Pr.
(1987) 469 P. (Cambridge Monographs On Mathematical Physics)

Gervars, Jean-Loup ; Toporov, Ivan T.: GHOST SYSTEMS AS RA-
TIONAL CONFORMAL THEORIES. In: Phys. Lett. B219 (1989), S.
435

GuURrAREE, V.: Logarithmic operators in conformal field theory. In: Nucl.
Phys. B410 (1993), S. 535-549

Kausch, H. G.: Extended conformal algebras generated by a multiplet
of primary fields. In: Phys. Lett. B259 (1991), S. 448-455

Kausch, Horst G.: Curiosities at c=-2. (1995)

Kausch, Horst G.: Symplectic fermions. In: Nucl. Phys. B583 (2000),
S. 513-541

Kawar, Shinsuke: Logarithmic conformal field theory with boundary. In:
Int. J. Mod. Phys. A18 (2003), S. 4655-4684

Kronn, Marco ; FLonr, Michael: Ghost systems revisited: Modified
Virasoro generators and logarithmic conformal field theories. In: JHEP
01 (2003), S. 020

Kogan, Ian 1. ; Lewis, Alex: Origin of logarithmic operators in confor-
mal field theories. In: Nucl. Phys. B509 (1998), S. 687-704

Knizanik, V. G.: ANALYTIC FIELDS ON RIEMANN SURFACES. 2.
In: Commun. Math. Phys. 112 (1987), S. 567-590

Kac, V. G. ; Rama, A. K.: BOMBAY LECTURES ON HIGHEST
WEIGHT REPRESENTATIONS OF INFINITE DIMENSIONSAL LIE
ALGEBRAS. In: Adv. Ser. Math. Phys. 2 (1987), S. 1-145

67



[MARSO03]

[MRO1]

[Pok]

[PRO4a]

[PRO4b]

[PRO4c]

[Roh96]

[RS93]

[RTO3]

[Rue02]

[Sal92a]

[Sal92b]

[Sch96]

MocHIMI-ARAGHI, S. ; Rounant, S. ; Saapar, M.: Use of nilpotent weights
in logarithmic conformal field theories. In: Int. J. Mod. Phys. Al8
(2003), S. 4747-4770

Maneu, Stephane ; RuerLg, Philippe:  Scaling fields in the two-
dimensional abelian sandpile model. In: Phys. Rev. E64 (2001), S.
066130

Pokorski, S.: GAUGE FIELD THEORIES. . — Cambridge, Uk: Univ.
Pr. (1987) 394 P. (Cambridge Monographs On Mathematical Physics)

Prroux, Geoftroy ; RueLLg, Philippe: Boundary height fields in the
Abelian sandpile model. (2004)

Prroux, Geoffroy ; RueLLg, Philippe: Logarithmic scaling for height
variables in the Abelian sandpile model. (2004)

Piroux, Geoffroy ; RueLLg, Philippe: Pre-logarithmic and logarithmic
fields in sandpile model. (2004)

Romnsiepg, Falk: On reducible but indecomposable representations of the
Virasoro algebra. (1996)

Rozansky, L. ; SALEUR, H.: S and T matrices for the superU(1,1) WZW
model: Application to surgery and three manifolds invariants based on
the Alexander-Conway polynomial. In: Nucl. Phys. B389 (1993), S.
365-423

Ranmr TaBar, M. R.: Disordered systems and logarithmic conformal
field theory. In: Int. J. Mod. Phys. A18 (2003), S. 4703-4746

RUELLE, Philippe: A ¢ = -2 boundary changing operator for the Abelian
sandpile model. In: Phys. Lett. B539 (2002), S. 172-177

SALEUR, H.: Geometrical lattice models N=2 supersymmetric theories in
two-dimensions. In: Nucl. Phys. B382 (1992), S. 532-560

SALEUR, H.: Polymers and percolation in two-dimensions and twisted
N=2 supersymmetry. In: Nucl. Phys. B382 (1992), S. 486-531

ScHELLEKENS, A. N.: Introduction to conformal field theory. In: Fortsch.
Phys. 44 (1996), S. 605-705

68



[Sch97] ScHOTTENLOHER, M.: A mathematical introduction to conformal field
theory: Based on a series of lectures given at the Mathematisches Institut
der Universitaet Hamburg. In: Lect. Notes Phys. M43 (1997), S. 1-142

[Sto] STONE, (ed. ).: Bosonization. . — Singapore: World Scientific (1994) 539
p-

[Wan98a]  Wana, Wei-qiang: Classification of irreducible modules of W-3 algebra
with c=-2. In: Commun. Math. Phys. 195 (1998), S. 113-128

[Wan98b]  WanG, Wei-qiang: W(1+infinity) algebra, W(3) algebra, and Friedan-
Martinec-Shenker bosonization. In: Commun. Math. Phys. 195 (1998),
S.95-111

69



Ich versichere, dass ich diese Arbeit selbstindig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate kenntlich gemacht habe.

Bonn, Januar 2005



