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Abstract

Two different approaches to calculate the fusion rules of the cp,1 series of loga-
rithmic conformal field theories are discussed. Both are based on the modular
transformation properties of a basis of chiral vacuum torus amplitudes, which
contains the characters of the irreducible representations.
One of these is an extension, which we develop here for a non-semisimple
generalisation of the Verlinde formula introduced by Fuchs et al., to include
fusion products with indecomposable representations. The other uses the Ver-
linde formula in its usual form and gets the fusion coefficients in the limit, in
which the basis of torus amplitudes degenerates to the linear dependent set of
characters of irreducible and indecomposable representations. We discuss the
effects, which this linear dependence has on any result for fusion rules, which
are calculated from these character’s modular transformation properties.
We show that the two presented methods are equivalent. Furthermore we
calculate explicit BPZ-like expressions for the resulting fusion rules for all p
larger than 2.
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1. Introduction

The connection between the modular transformation properties of the characters in rational
conformal field theories (RCFTs) and the fusion algebra of their chiral symmetry algebra is one of
the keystones, which have led to our deep mathematical understanding of these compared to other
non-trivial quantum field theories. Since its eponymous proposal in 1988 by E. Verlinde [Ver88]
the Verlinde-formula provided an enormous simplification to the calculation of the fusion rules.
Its proof, however, was first found in the version, in which it is known in algebraic geometry, by
Faltings in 1994 [Fal94]. Here it calculates the dimension of the space of holomorphic sections of
certain line bundles over a given moduli space.
The rigorous connection between these two fields is developed in a research program describing
the vertex operator algebras associated with these models by Huang, Lepowsky and others. In
this context a proof for the Verlinde formula was finished only recently – via [Hua05a] – in [Hua04]
(also cf. [Hua05b]).
In this paper we will investigate the fusion rules of the cp,1 models, which saw the light of day
in a series of papers starting with Gurarie’s [Gur93] giving the c2,1 = −2 model as the simplest
example for logarithmic conformal field theories. The latter were proposed by Saleur in [Sal92]
for the description of two-dimensional polymers. Since then much work has been done to develop
these models at first especially for c = −2 (e.g. [GK96b, Kau95, Kau00]), but also for general
p (e.g. [GK96a, Flo96, Flo97]), as reviewed also in [Flo03, Gab03]. Recently some results yet
only existing for c = −2 could be generalised to all p ≥ 2, as in [CF06] or [FGK07]. Also the
study of the vertex operator algebras relevant for these models has advanced remarkably lately
(cf. [AM07]). Feigin et al. have investigated the connections of such cp,1 models to quantum
groups via a Kazhdan-Lusztig Correspondence (cf. [FGST06a, FGST06b]).
The cp,1 models are also well known to be rational in the weak sense, that their primary fields fall
into finitely many blocks with respect to an extended symmetry algebra. They are found to be
governed by extensions of the Virasoro algebra at c = cp,1 by triplets of fields with integer con-
formal weight (cf. [Kau91]), the triplet W-algebras W(2, (2p− 1)⊗3), which are their maximally
extended local chiral symmetry algebras. However, these algebras have reducible but indecompos-
able representations, which we from now on just call indecomposable representations in contrast
to the irreducible ones. So these models are logarithmic conformal field theories (LCFTs) and
have a non-semisimple representation category of their vertex algebra. They are not subject to
the mentioned proof of the Verlinde formula, for which the conformal field theories has to be
rational in the strong sense, where the semisimplicity of the representation category is required.
We will refer to this definition of rationality, when we talk about RCFTs.
The fusion product representations are defined by the action of the modes of the meromorphic
fields on the product of fields given by a comultiplication formula as reviewed in [Gab00] (also
cf. [MS89, Gab94a, Gab94b]). For the cp,1 models one needs the fusion rules of all possible pairs
of indecomposable and irreducible representations of either the Virasoro algebra or the triplet
W-algebra. For the Virasoro algebra these are infinitely many fusion products, which have been
calculated for the cases of p = 2, p = 3 and partially for higher p by Gaberdiel and Kausch in
[GK96a]. But they all to decompose into finitely many terms. Many fusion products of two irre-
ducible representations decompose into indecomposable representations. Gaberdiel and Kausch’s
calculation for the triplet algebra for p = 2 presented in [GK96b] has proven that the c2,1 = −2
model is rational in the slightly stronger sense compared to the mentioned weak sense, in which
the fusion products are also required to decompose into finitely many direct summands. Further-
more fusion rules for other logarithmic conformal field theories have been calculated in [EF06]
and for logarithmic minimal lattice models in [PRZ06, PR07].
More parallels to RCFTs have been found: The partition functions of the cp,1 models could be
calculated in terms of the characters of irreducible representations and further forms associated
to indecomposable ones (cf. [Flo96, Flo97]). The latter are not their characters, as these char-
acters are linearly dependent with the ones of the irreducible representations. This is also the
major problem, when one tries to calculate a S-matrix to appear in the Verlinde formula. In
the RCFT case it gives the transformation of the characters of irreducible representations under
one of the generators of the modular group SL(2, Z), τ → −1/τ , which we call S (and the other
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generator T ). The characters are also referred to as the canonical basis of the vacuum torus
amplitudes. For the cp,1 models we do not have this canonical basis to calculate the S-matrix,
as the indecomposable representation have to be taken care of. But in [Flo97] the forms already
representing the indecomposable representations in the partition function are used just for this
purpose. These forms depend on a parameter, which we call α throughout this paper, and become
the characters of indecomposable representations in the limit α → 0. An adaption of the Verlinde
formula is found there, in which this limit has to be taken: the limit-Verlinde formula. It gives the
correct fusion rules, as far as they are known from [GK96a, GK96b], after a manual replacement
of combinations of irreducible representation by indecomposable representations, which can not
be distinguished by methods based on the modular transformation properties of characters.
In [FG06] it has been shown for the case p = 2, that the set of forms used to calculate the
S-matrix here also is a basis of the chiral vacuum torus amplitudes. Also strong arguments are
presented there in favour of this to be true for all values of p. Furthermore the C2-cofiniteness
of the corresponding conformal vertex algebras has been shown first for p = 2 (cf. [Abe05]) and
then in general (cf. [CF06]). This is part of the definition of a rational conformal vertex algebra
as given in [Fuc06].
This latter paper details the argumentation leading to an alternative ”generalised” Verlinde for-
mula for the cp,1 models for fusion products of two irreducible representations, which has been
presented by Fuchs et al. in [FHST04]. While in the case of RCFTs the matrices NI containing the
fusion coefficients are diagonalised simultaneously by the S-matrix, they are block diagonalised
simultaneously here by the S-matrix of this method, which is found by the construction of an
SL(2, Z) representation with the help of an automorphy factor. The result is a fusion algebra,
which is closed within the irreducible representations. This fusion algebra again only corresponds
to the results of Gaberdiel and Kausch through the same replacements as for the limit-Verlinde
formula.
In section 2 the previous work on the limit-Verlinde formula will be reviewed and complemented.
Especially the arguments for the needed manual replacements are detailed in section 2 and the
explicit form of the S-matrix used in this Verlinde formula is given for general p. In the appendix
we further supplement our discussion. Appendix A makes clear that the choice, which one has
on the forms representing the indecomposable representations, has no influence on the results of
this method whatsoever. Appendix B explicitly gives the fusion rules for p = 2 and p = 3 before
and after the replacements. This is complemented by a demonstration through a few examples,
how these replacements come about, in appendix B.1.
In section 3 we develop an extension of Fuchs et al.’s work yielding a block diagonalisation
method, which also incorporates the indecomposable representations. The correct extension of
the S-matrix simultaneously block diagonalising the – now also larger – fusion coefficient matrices
for both irreducible and indecomposable representations is found in a few steps starting from the
mentioned automorphy factor. We also use the known fusion rules for p = 2 to accomplish this,
as it is detailed in appendix C.
In section 4 we proof that this extended block diagonalisation method reduces to its archetype
by simply projecting on the components associated to the irreducible representations.
In section 5 we show that our extended block diagonalisation method gives the same results as the
limit-Verlinde formula for all p ≥ 2, which amounts to equivalence of both approaches. Together
with section 4 we thus find that all three methods – the small and extended block diagonalisa-
tion method and the limit-Verlinde formula – compute the same fusion rules for products of two
irreducible representations.
Finally in section 6 we proof explicit expressions for the decompositions of the fusion products
for general p in BPZ-like form following from our ”generalised” Verlinde-formulas. Indeed, the
fusion rules have the usual form for CFTs, as it was already seen in the paper [BPZ84] of Belavin
and Polyakov and Zamolodchikov, which has laid the headstone of the whole field of conformal
field theories. We also apply the replacement rules we have found to these expressions and find
for the products of irreducible representations the formula proposed by Gaberdiel and Kausch in
[GK96a].
More details on this work can be found in the diploma thesis of HK [Knu06].
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2. The Limit-Verlinde Formula

The proposal for calculating the fusion rules given as ”case III” in earlier work of MF ([Flo97])
is reviewed and supplemented in this section. As we already mentioned in the introduction, it
is based on a S-matrix calculated from a set of forms consisting of the characters of irreducible
representations of the triplet W-algebra, W(2, (2p − 1)⊗3), and further (p − 1) forms, which
depend on a parameter α and with which the set closes under modular transformations γ ∈
SL(2, Z). In the limit α → 0 it becomes the linear dependent set of characters of irreducible and
indecomposable representations. It is a basis of chiral vacuum torus amplitudes (cf. [FG06]). Its
specific choice, which we will use in this section, is detailed in appendix A. We also discuss there
that the freedom of choice, which we have for the mentioned additional forms, has no influence
on the outcome for the fusion rules. We will refer to this set as our chosen basis of vacuum torus
amplitudes. Our goal is to calculate the S-matrix, Sp,α, which gives the transformation τ → −1/τ
of the elements of this basis, defined by

(2.1) χχχp(α)
(
−1

τ

)
= Sp,αχχχp(α)(τ).

Here the components of the vector χχχp(α) are the chosen basis elements. Sp,α will then be used in
an adapted Verlinde formula to calculate the fusion coefficients.
We label the irreducible and indecomposable representations of W(2, (2p−1)⊗3) by the conformal
weights of their highest weight states given in square brackets. These weights are given by the
Kac formula for conformal weights of primary fields in minimal models, which also gives the ones
of the cp,1 models in an extended Kac table hr,s with 0 < r < 3 and 0 < s < 3p. With the second
line of the Kac table being redundant to the first we label the irreducible representations by [h1,σ]

with 0 < σ ≤ p or 2p ≤ σ < 3p and the indecomposable representations
[
h̃1,σ

]
with p < σ < 2p,

where the tilde marks their reducibility. We select a sequence of elements of our basis of vacuum
torus amplitudes defining the vector

χχχt
p(α) = (χ+

0,p, χ
−
p,p, χ

+
p−1,p, χ

−
p−1,p, χ̃p−1,p(α), χ+

p−2,p, χ
−
p−2,p, χ̃p−2,p(α), . . . ,(2.2)

χ+
1,p, χ

−
1,p, χ̃1,p(α)).

For the characters, χ+, χ−, this corresponds to the sequence chosen in [FHST04]. They are linear
combinations of Riemann-Jacobi Θ-functions, Θλ,p, and affine Θ-functions, (∂Θ)λ,p, divided by the
Dedekind η-functions, except for the two projective irreducible modules, which are proportional to
a Riemann-Jacobi Θ-functions divided by the Dedekind η-functions (cf. [Flo97]). The additional
(p− 1) chiral vacuum torus amplitudes, χ̃(α), contain each one of the forms

(∇Θ)λ,p = iτ(∂Θ)λ,k =
1
2π

log(q)(∂Θ)λ,k

instead of the affine Θ-function.
With the vector

ΘΘΘt
p =

1
η

(
Θ0,p,Θ1,p, . . . Θp,p, (∂Θ)1,p, (∂Θ)2,p, . . . (∂Θ)p−1,p,

−(∇Θ)1,p,−(∇Θ)2,p, . . . ,−(∇Θ)p−1,p

)
we can express the vector χχχp(α) by the multiplication of the matrix B of coefficients in the linear
combinations and the vector of Θ-functions:

(2.3) χχχp(α) = BΘΘΘp
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The matrix B has only few non-zero components:

B1,1 = 1 , B2,p = 1 ,(2.4)

B3s,p−s =
s

p
, B3s,2p−s+1 =

1
p

,

B3s+1,p−s =
p− s

p
, B3s+1,2p−s+1 = −1

p
,

B3s+2,p−s = 2 , B3s+2,2p+s = iα

for 0 < s < p. The last line encodes the choice for the forms χ̃(α) discussed in appendix A.
The modular transformation properties of the Θ-functions are known and the transformation
τ → −1/τ of the vector ΘΘΘp is given by the matrix S defined by

ΘΘΘp

(
−1

τ

)
= Sp,αΘΘΘp(τ)

This matrix has three non-zero blocks with the components

Sij =
1

1 + δj,1 + δj,p+1

√
2
p

cos
(

π(i− 1)(j − 1)
p

)
∀ 0 < i, j ≤ p + 1 ,

S(2p+k)(p+l+1) = i
√

2
p

sin
(

πkl

p

)
∀ 0 < k, l < p ,

S(p+n+1)(2p+m) = −i
√

2
p

sin
(

πnm

p

)
∀ 0 < n,m < p .

So finally together with equations (2.3) and (2.1) the S-matrix, Sp,α, is equal to the matrix product
BSB−1. This leads to a block structure with one 2× 2 block, S(p)0,0, and each (p− 1) 2× 3 and
3× 2 blocks, S(p)0,l and S(p)s,0, respectively. These blocks do not depend on α. The rest of the
matrix is filled with 3× 3 blocks S(p, α)s,l. The indices s and l always take values between 1 and
p− 1, inclusively, and p ≥ 2. We get:

(2.5) Sp,α =


S(p)0,0 S(p)0,1 . . . S(p)0,p−1

S(p)1,0 S(p, α)1,1 . . . S(p, α)1,p−1
...

...
. . .

...
S(p)p−1,0 S(p, α)p−1,1 . . . S(p, α)p−1,p−1


with

S(p)0,0 =
1√
2p

(
1 1
1 (−1)p

)
,

S(p)0,l =
2√
2p

(
1 1 0

(−1)p−l (−1)p−l 0

)
,

S(p)s,0 =
1√
2p


s
p (−1)p+s s

p
p−s
p (−1)p+s p−s

p

2 2(−1)p+s

 ,

S(p, α)s,l =
2√
2p

(−1)p+l+s ×
s
pcsl + 2

p
1
αssl

s
pcsl + 2

p
1
αssl − 1

pαssl
p−s
p csl − 2

p
1
αssl

p−s
p csl − 2

p
1
αssl

1
pαssl

2csl − α(p− l)ssl 2csl + αlssl 0


with the abbreviations csl = cos

(
π sl

p

)
and ssl = sin

(
π sl

p

)
.

This matrix fulfils Sp,α
2 = 1l, but is not symmetric. For α → 0 the forms χ̃λ,p(α) pass into

the characters of the indecomposable representations. So they are linearly dependent with the
characters of the irreducible representations in this limit. Consequently some of the entries of
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Sp,α diverge in this case.
For completeness the matrix Tp,α for the transformation τ → τ + 1 is given here. It is defined as

(2.6) χχχp(α)(τ + 1) = Tp,αχχχp(α)(τ)

and is calculated to be

Tp,α(τ) = T (p)0,0 ⊕
p−1⊕
s=1

T (p, α)s,s ,

T (p)0,0 =

(
e−i π

12 0
0 e−iπ( p

2
− 1

12)

)
,

T (p, α)s,s =

 ts 0 0
0 ts 0

iα (p− s) ts −iα s ts ts


with

ts = e
−iπ

„
(p−s)2

2p
− 1

12

«
.

The matrices Sp,α and Tp,α describe the action of the generators S and T of the modular group
SL(2, Z) on χχχp(α)(τ). So with equations (2.1) and (2.6) any element γ ∈ SL(2, Z) can be
represented as a matrix Gp,α(γ), which is a product only containing copies of Sp,α and Tp,α, such
that

(2.7) χχχp(α) (γτ) = Gp,α(γ)χχχp(α)(τ)

As the action of SL(2, Z) on functions on C is linear1, we directly have for two elements γ, γ′ ∈
SL(2, Z), that

(2.8) Gp,α(γγ′) = Gp,α(γ)Gp,α(γ′)

It follows that Sp,α and Tp,α generate a representation of SL(2, Z), namely Gp,α(γ), for a fixed
α 6= 0. We can also immediately see that like the generators of SL(2, Z) also Sp,α and Tp,α have
to fulfil the conditions Sp,α

2 = 1l and (Sp,αTp,α)3 = 1l. As an easy check one can calculate these
products for any p, which we did for up to p = 6.
The matrix Sp,α is now plugged into the Verlinde formula as known for rational conformal field
theories. This, of course, leads to an object Nij

k(α), which depends on α. But here the limit of
α → 0 exists, as we will proof for all p along with our outcome of the comparison of this approach
with the block diagonalisation method in section 5. We define the coefficients Nij

k to be exactly
this limit and get the limit-Verlinde formula:

(2.9) Nij
k = lim

α→0
Nij

k(α) = lim
α→0

( 3p∑
r=1

(Sp,α)jr(Sp,α)ir(Sp,α)r
k

(Sp,α)3,r

)
Note that the third component of the vector χχχp(α)(τ) is the character of the vacuum representa-
tion. In contrast to the semisimple case of RCFTs with symmetric S-matrix, the indices of Sp,α in
the Verlinde formula have to be kept as in this formula. Especially the third line of Sp,α – rather
than the column – has to be taken for the denominator of the α-Verlinde formula. This is due to
a convention of left-multiplication of Sp,α with χχχp(α)(τ) in eq. (2.1), which we have chosen quite
naturally.
At first sight the results for Nij

k for p = 2 and p = 3, which are given in the appendix in tables
1 and 3, differ quite much from the fusion coefficients calculated in [GK96b] and [GK96a]. How-
ever, we have to note that any fusion rules we get using eq. (2.9) by itself, can only be taken as
true on the level of characters, not representations, because the calculation is based only on the
modular transformation properties of the characters. Here we have the problem, that, as soon
as we take the limit α → 0, the functions χ̃λ,p(α) become the characters of the indecomposable
representations, which are a linear combination of characters of irreducible representations. To

1The action of SL(2, Z) on a function f : C → C shall be defined as the composition f ◦ γ with γ ∈ SL(2, Z).
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be precise the relation between the characters of the irreducible representations, χ+
λ,p and χ−λ,p,

and those of the indecomposable representations, χRλ,p, is

(2.10) 2χ+
λ,p + 2χ−λ,p =

2
η(τ)

Θλ,p = χRλ,p

for 0 < λ < p.
So the method presented here can not distinguish the indecomposable representation from these
linear combination of irreducible representations in the decomposition of the fusion product in
the first place.
Indeed, for many fusion products there are components Nij

k corresponding to these linear com-
binations, while in [GK96b] and [GK96a] the corresponding indecomposable representation have
been found to be the correct result.
There is another problem that occurs in fusion products of indecomposable representations with
some other representation: For one and the same fusion product Nij

k encodes both the lin-
ear combinations mentioned above and the corresponding indecomposable representations, which
then have a negative integer coefficients. These problems are illustrated in the case of p = 3 in
appendix B.1.
Without clear rules for these replacements the value of the results would be lost. Fortunately
the triplet algebra, W(2, (2p− 1)⊗3, has a rescaled su(2) subalgebra, which is formed by the zero
modes of the fields W (a) extending the Virasoro algebra to W(2, (2p− 1)⊗3. We know that fusion
products of irreducible representations can only decompose into irreducible representations, which
have the correct su(2) quantum number j with respect to this subalgebra and any indecomposable
representations, because they have no unique su(2) quantum numbers.
This rules out all the combinations of both singlets and doublets, with respect to j, in the de-
composition. The two irreducible representations having the characters on the left hand side of
equation (2.10), which gives our ”translation” to the correct fusion rules, are exactly a singlet and
a doublet and thus forbidden. This justifies the permanent replacement in all fusion products of
two irreducible representations, in which the mentioned combinations appear.
The products with indecomposable representations are a bigger problem because the argument
of su(2) quantum numbers can not be applied, when the representation does not have unique
quantum numbers. Here a practical argument is given by the negative coefficients. These should
be mended, which seems to be possible for all p as well.
There are quite a few fusion products still left out, in which a replacement should be made, but
where we have no argument except the result. For example, for p = 3 there are 7 fusion products
of this kind left (cf. table 3 in app. B). But there is also no argument, why exactly these should
be exceptions.
All in all we can surely say that the following rules are well-founded. There are no indications of
deviations whatsoever:

• Replace the left hand side of the following ”equation” by the indecomposable representa-
tion on the right hand side, whenever it appears:

(2.11) 2 [h1,p−λ] + 2 [h1,3p−λ] =
[
h̃1,p+λ

]
λ = 1 . . . p− 1 .

• If two coefficients appear now for the same indecomposable representation in one fusion
rule, add them.

If there is a negative coefficient of an indecomposable representation in the decomposition of the
fusion product, it has to be compensated by a higher positive multiplicity from the first rule to
make sense. We checked this up to p = 6.
Finally the following conjecture summarises this method.

Conjecture: The structure constants, Nij
k, of the fusion algebra of the cp,1 series are calculated

by equation (2.9) for all i = 1 . . . (3p− 1) and

• for all (j, k) ∈ {1, 2}×{1, . . . , 3p−1} and all (j, k) ∈ {3, . . . , 3p−1}×{1, 2} as Nij
k = Nij

k
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• for all (j, k) ∈ {3, 3p− 1} × {k ∈ {3, . . . , 3p− 1}|k mod 3 = 0} and κ = k, (k + 1) as

Nij
κ =

{
0 if Nij

k = Nij
(k+1)

Nij
κ else

,

Nij
(k+2) =

{
Nij

(k+2) + Nij
k/2 if Nij

k = Nij
(k+1)

Nij
(k+2) else

.

Here we have stated the proposed connection between the fusion coefficients Nij
k and the pre-

fusion coefficients Nij
k, which enables us to compute the former for any p with little expenses.

However, the limit in this procedure makes it hard to understand the cause, why this leads to the
correct result. The situation looks surely a bit better after the work in [FG06] gave us the new
perspective on the functions χ̃λ,p(α) as chiral vacuum torus amplitudes. But still one advantage
of a different method, which we will discuss in the next section, is the absence of such a limit.
As mentioned above the ambiguities about the indecomposable representations are generic for
methods based on modular transformation properties of characters. So there is virtually no hope
to find a method using some kind of Verlinde formula, which does not exhibit them. But this
is something we gladly cope with, as the limit-Verlinde formula reduces the amount of needed
calculation to get the fusion rules for any particular p enormously.

3. Block Diagonalisation of the Fusion Rules

In this section we present an extension of the approach of Fuchs et al., first published in
[FHST04], now including the indecomposable representations as well. First we want to mention
a few key features already in the beginning. A limit like in the last section does not appear. This
method is motivated by the statement that any non-semisimple, finitely generated, associative and
commutative algebra, like the fusion algebra we look for here, is the direct sum of its radical and
some semisimple algebra. As the key consequence a matrix Pp is found, which simultaneously block
diagonalises the matrices Np,I of pre-fusion coefficients in contrast to the case of RCFTs, where
the fusion algebra of the Virasoro irreducible modules is semisimple and the S-matrix diagonalises
the fusion coefficient matrices NI simultaneously. We first find out, how the simultaneous block
diagonalisation comes about and see that the matrix Pp is a matrix consisting of simultaneous
eigenvectors of the matrices Np,I . Afterwards we find a S-matrix Sp and the extension of all other
matrices appearing in the original block diagonalisation approach in [FHST04]. While large parts
of the argumentation in that paper were in a general setting for non-semisimple fusion algebras,
we will restrict ourselves here to the case of the cp,1 models using the same notation.

3.1. Simultaneous Eigen Decomposition of the Fusion Coefficient Matrices. This sub-
section follows the argumentation of its archetype by Fuchs et al. ([FHST04]) quite closely.
We want to block diagonalise the matrices of pre-fusion coefficients for the full pre-fusion algebra
including indecomposable representations simultaneously. This pre-fusion algebra is defined in
the familiar way:

(3.1) XIXJ =
3p−1∑
K=1

(Np)IJ
KXK .

The basis X is now larger than in [FHST04] and also contains the indecomposable representations.
Its sequence is chosen to be the same as the one of the vector χχχp(α) (eq. (2.2)).
We now change the basis in view of the direct sum of a semisimple algebra and a radical, which is
equal to the pre-fusion algebra. The new one consists of the union of a set of primitive idempotents,
eA with A = 1 . . . p + 1, in the semisimple algebra and a basis of the radical, wA and w′A with
A = 3 . . . p + 1. All the primitive idempotents eA form a partition of the unit element of the
semisimple algebra (and also the whole pre-fusion algebra):

(3.2)
p+1∑
A=1

eA = 1l ,



8 Michael Flohr and Holger Knuth

Each pair wA and w′A corresponds to an idempotent, eA, with an image of dimension 3. There
are two further primitive idempotents in the new basis with a one dimensional image (A = 1, 2).
The new basis, called Y , is taken in the following order:

Y = (e1, e2, e3, w3, w
′
3, e4, w4, w

′
4, . . . , ep+1, wp+1, w

′
p+1) .

The idempotents of the semisimple algebra and the basis of the radical relate to each other by

eAeB = δA,BeB ,(3.3)
eAwC = δA,CwC ,(3.4)
eAw′C = δA,Cw′C ,(3.5)
wCwD = 0 ,(3.6)
w′CwD = 0 ,(3.7)
w′Cw′D = 0(3.8)

with 0 < A,B ≤ p + 1, 3 ≤ C,D ≤ p + 1 and δ being the Kronecker delta.
The change of basis is given by Pp defined by

(3.9) XL =
3p−1∑
J=1

(Pp)L
JYJ .

We will see in the following proposition and its proof that this matrix is the essential entity to be
calculated, as the pre-fusion coefficients can be expressed in terms of its matrix elements only.

Proposition: Pp block diagonalises the matrices Np,I simultaneously, i.e.

(3.10) Np,I = PpMp,IPp
−1

with block diagonal matrices Mp,I , 0 < I ≤ 3p − 1. The I-th row of Pp, πI , is related to the row
corresponding to the vacuum representation, πΩ, by

(3.11) πI = πΩMp,I

for all 0 < I ≤ 3p− 1.

Remark: We will proof these statements, as we calculate now an explicit expression for Mp,I in
terms of matrix elements of Pp.

Proof: On the one hand we multiply equation (3.1) by (Pp
−1)L

J and sum over J :

XIYL =
3p−1∑

K,J,R,S=1

(Pp
−1)L

J(Np)IJ
K(Pp)K

S(Pp
−1)S

R
XR

=
3p−1∑

K,J,S=1

(Pp
−1)L

J(Np)IJ
K(Pp)K

S︸ ︷︷ ︸
=:(Mp,I)L

S

YS .(3.12)

Hence the matrices Mp,I give the decompositions of the products of XI and YL into linear com-
binations of YS for I, L = 1 . . . 3p− 1.
On the other hand with the relations between the elements of the basis Y (eqs. (3.3)-(3.8)) and
equation (3.9) one can calculate the product on the left hand side

(3.13) XIYA =


(Pp)IAYA for A =1, 2

(Pp)IAYA + (Pp)I(A+1)YA+1 + (Pp)I(A+2)YA+2 for A =3, 6, 9, . . .

(Pp)I(A−1)YA for A =4, 7, 10, . . .

(Pp)I(A−2)YA for A =5, 8, 11, . . . .
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So Mp,I is an upper-triangular block diagonal matrix with all but one 3× 3 blocks and reads

Mp,I = Mp,I,0 ⊕
p−1⊕
n=1

Mp,I,n ,(3.14)

Mp,I,0 =
(

(Pp)I1 0
0 (Pp)I2

)
,

Mp,I,n =

(Pp)I(3n) (Pp)I(3n+1) (Pp)I(3n+2)

0 (Pp)I(3n) 0
0 0 (Pp)I(3n)

 .

Now we still need to show the second half of our proposition. The row πΩ of the matrix Pp is
determined by the fact that the vacuum representation is the unit element of the fusion algebra.
Thus eq. (3.2) tells us that the sum of all idempotents eA is just the vacuum representation. Eq.
(3.9) for the case of the vacuum, L = Ω, reads

XΩ =
3p−1∑
K=1

(πΩ)KYK .

A comparison to eq. (3.2), with the order of the basis Y kept in mind, yields

(3.15) πΩ = (1, 1, 1, 0, 0, 1, 0, 0, . . . , 1, 0, 0) .

One can plug this into eq. (3.1) with XJ being the vacuum representation:

(3.16) XI = XΩXI =
3p−1∑
K=1

(πΩ)KYKXI .

Because of the commutativity of the algebra we can plug eq. (3.12) into eq. (3.16):

(3.17) XI =
3p−1∑

K,L=1

(πΩ)K(Mp,I)K
L︸ ︷︷ ︸

=(πI)L

YL .

Comparing with the definition of Pp (eq. (3.9)) equation (3.11) has been shown.

What is actually done here is a simultaneous eigen decomposition for the set of matrices Np,I .
This is possible, because they happen to be the structure constants of the algebra in equation
(3.1) and so are related to each other by the properties of this algebra like commutativity. This
enters our proof, as we plug in (3.1) at one point and interchange elements of X.
The eigen decomposition is nicely encoded in eqns. (3.3)-(3.8). Using these relations we can write
the structure constants (Np,I)j

k in the form of eq. (3.10) and calculate for a column pJ of Pp that

Np,IpJ = PpMp,IPp
−1pJ = PpMp,IeJ(3.18)

=


(
(Pp)IJpJ−1 + (Pp)I(J−1)pJ

)
for J =4, 7, 10, . . .(

(Pp)IJpJ−2 + (Pp)I(J−2)pJ

)
for J =5, 8, 11, . . .

(Pp)IJpJ else

,

where eJ is the J-th element of the canonical basis. Using this result one also finds

(Np,I − (Pp)I,J−11l)2pJ = 0 for J = 4, 7, 10, . . . ,

(Np,I − (Pp)I,J−21l)2pJ = 0 for J = 5, 8, 11, . . . .

Thus pJ , pJ+1 and pJ+2 form a simultaneous three dimensional eigenspace with eigenvalues (Pp)IJ
of the respective matrices Np,I for all 0 < I < 3p− 1 and J = 3, 6, 9 . . ..
It also shows that the matrix Pp is a matrix consisting of simultaneous generalised eigenvectors
of the matrices Np,I for all 0 < I < 3p.
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3.2. The Connection between Sp,α and Pp. We now need to calculate the matrix Pp of simul-
taneous eigenvectors of the pre-fusion coefficient matrices Np,I . The bottom of the line is that it
is connected to the matrix Sp,α from section 2 in much the way the τ -dependent S-matrix Sp(τ)
defined in [FHST04] is connected to the corresponding matrix of simultaneous eigenvectors there.
Sp(τ) is given by the transformation of the characters of irreducible representations, χχχirr,p(τ) (de-
fined by omitting the additional forms in eq. 2.2), under τ → −1/τ (explicitly given by eq. (3.4)
in [FHST04]). To be more precise the modular transformations of these characters are expressed
in the form of τ -dependent matrices,

(3.19) χχχirr,p (γτ) = Gp(γ, τ)χχχirr,p(τ) ,

and Sp(τ) = Gp(S, τ). The construction of an SL(2, Z) representation with the help of an
automorphy factor jp(γ, τ) with γ ∈ SL(2, Z),

(3.20) ρ(γ) = jp(γ, τ)Gp(γ, τ) ,

leads to a τ -independent S-matrix (cf. section 4.3 of [FHST04]):

(3.21) S(p) = jp(S, τ)Sp(τ)

Here we replace the automorphy factor by a conjugation with the matrix Cirr,p(τ), so that S(p) =
Cirr,p(−1/τ)Sp(τ)Cirr,p

−1(τ) and see that it corresponds to a matrix Cp(α) in the same way as
Sp(τ) corresponds to Sp,α. But this only partially determines the matrices Cp(α). Through a
longer study of the case p = 2, which is described in appendix C, we find the missing matrix
entries and also get our α-independent S-matrices

(3.22) Sp = Cp(α)Sp,αCp
−1(α) ,

which are directly related to the matrices Pp analogous to the situation in [FHST04]:

(3.23) Pp = SpKp .

The matrices Kp turn out to be a simple extension of the corresponding matrices in [FHST04],
which we can extend with ones on the diagonal and zeros for all the additional off-diagonal matrix
elements.
This can be seen following the argumentation of [FHST04] once again. We expect Kp to have
the corresponding block diagonal structure because Sp should block diagonalise the pre-fusion
coefficient matrices.
As in [FHST04] conditions on Kp result from the relation of the two known vacuum rows of S(p)
(eq. (3.31)) and Pp (eq. (3.15)), which Kp has to connect. Now the matrix elements, (S(p)1,j)1,3,
of the vacuum row are zero. Thus any element of the third row of a block of Kp is multiplied by
zero and does not contribute to the vacuum row of Pp. However, this way the other elements are
restricted in the same way as in [FHST04].
We set the additional third column in the first two rows of each block to zero. This gives us the
correct result for the vacuum row of Pp and also is compatible with our goal to be able to reduce
the whole extended method back to its archetype for products of irreducible representations by
projection on the 2p components of our basis, which represent the irreducible representations, as
we see in the next section. This provides us also with a reason to use the same normalisation for
the four matrix elements of each 3 × 3 block, which this projection leaves behind, and take the
determinant of this 2×2 block equal to one. But we also ask the 3×3 blocks to have determinant
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one, which fixes the third diagonal element of each block to be one. We are left with

Kp = (Kp)0 ⊕
p−1⊕
s=1

(Kp)s(3.24)

(Kp)0 :=

( 1
(Sp)Ω

1 0

0 1
(Sp)Ω

2

)

(Kirr,p)s :=


1

(Sp)Ω
2s+1−(Sp)Ω

2s+2 −(Sp)Ω
2s+2 0

−1
(Sp)Ω

2s+1−(Sp)Ω
2s+2

1
(Sp)Ω

2s+1 0

k(s)
1 k(s)

2 1


Two matrix elements per block, k(s)

1 and k(s)
2, are left open, which we set to zero, so that the

third row of each block is (0, 0, 1).

3.2.1. A Replacement for the Automorphy Factor for γ = S. Concerning the conformal field
theory we only know that the matrix S(p) (eq. (3.21)) is the one corresponding to the S-
transformation, τ → − 1

τ , which results from the construction of a representation of the modular
group, SL(2, Z), from the modular transformation properties of the characters of the irreducible
representations. To accomplish this an automorphy factor is needed. But an additional interpre-
tation giving a more direct connection to physically relevant quantities or properties would be
favourable. This has been the motivation to find a matrix Cirr,p(τ), which almost conjugates2

– we need a small alteration due to the τ dependence of Cirr,p(τ) – the two matrices Sp(τ)
and S(p) and replaces the automorphy factor. In this way we see S(p) as the matrix giving
the S-transformation of τ -dependent linear combinations, χ′irr,p(τ), of characters, χirr,p(τ), of
irreducible representations given by Cirr,p(τ):

(3.25) χ′irr,p(τ) = Cirr,p(τ)χirr,p(τ) .

With equation (3.19) one gets the S-transformation of χ′irr,p(τ):

χ′irr,p

(
−1

τ

)
= Cirr,p

(
−1

τ

)
χirr,p

(
−1

τ

)
= Cirr,p

(
−1

τ

)
Sp(τ)Cirr,p

−1(τ)Cirr,p(τ)χirr,p(τ)

= Cirr,p

(
−1

τ

)
Sp(τ)Cirr,p

−1(τ)︸ ︷︷ ︸
=:S′

p(τ)

χ′irr,p(τ) .

S′p(τ) is now set to be equal to S(p). So the matrix Cirr,p(τ) we are looking for should relate S(p)
and Sp(τ) through

(3.26) S(p) = Cirr,p

(
−1

τ

)
Sp(τ)Cirr,p

−1(τ) .

The detailed calculations leading to Cirr,p(τ) are contained in the thesis of HK [Knu06].
Here we just state the result, which we have verified calculating S(p) block by block with eq.
(3.26) and

Cirr,p(τ) = 1l2×2 ⊕
p−1⊕
s=1

(Cirr,p)s(τ) ,

(Cirr,p)s(τ) =

(
s+p
2p − ip−s

2p τ s
2p + i s

2pτ
p−s
2p + ip−s

2p τ 2p−s
2p − i s

2pτ

)
.(3.27)

2Conjugation is always meant in a group theoretical sense – not complex conjugate or suchlike. We say, a matrix
M conjugates two (similar) matrices N1 and N2, if N1 = MN2M

−1.
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This matrix only replaces the factor jp(γ, τ) for the case of γ = S. Because jp(γ, τ) depends
on γ, the matrix replacing it for other γ 6= S is different from Cirr,p(τ). Hence other elements
of the representation ρ(γ) are not given by the transformation γ of the same linear combination
of characters, χ′irr,p(τ). In other words the interpretation, it yields for S(p), does not hold for
the whole representation ρ(γ). Consequently the matrix Cirr,p(τ) is of little importance for the
original method of Fuchs et al.. It only gives us the new perspective explained just before eq.
(3.25).
However, for the extension of this method to indecomposable representations this matrix is very
helpful to find the matrix Cp connecting the larger S-matrix, Sp, taking the place of S(p) to
the α-dependent S-matrix Sp,α from section 2. We have seen in section 2 that Sp,α belongs to a
SL(2, Z) representation Gp,α(γ) (eq. 2.8). This representation gives the modular transformation
properties of a set of forms χχχp(α)(τ) without any automorphy factor (eq. 2.7). So we get with
the product CpGp,α(γ)Cp

−1 another representation of the modular group, which also needs no
automorphy factor – or said in another way, its automorphy factor is the unit matrix. Thus we
can interpret this new representation as the one, which gives directly the modular transformation
properties of the set of linear combinations Cpχχχp(α)(τ).

3.2.2. Substitution of τ -Dependent Linear Combinations. We now start to compare the two meth-
ods described in this section and section 2. Some character identities will help to transfer the
τ -dependent matrices Sp(τ) and Cirr,p(τ) into α-dependent matrices. This will reveal the con-
nection between Sp(τ) and Sp,α. We will also use the α-dependent pendant of Cirr,p(τ), which we
call C ′p(α), to find Cp later on.

Lemma: The characters χ+
p−s,p and χ−p−s,p given by the matrix elements of B in eq. (2.4) (the

2nd and 3rd row, respectively) and the forms from eq. (A.4) fulfil the equation

(3.28) i(s− p)τχ+
p−s,p + isτχ−p−s,p = − 1

α
χ̃p−s,p(α) +

2
α

χ+
p−s,p +

2
α

χ−p−s,p .

Remark: For the two matrices Sp(τ) (eq. (3.19) with γ = S) and Cirr,p(τ) (eq. (3.27)) one
observes the following: The only difference in the parts linear in τ of the pairs of matrix elements
in the same row, of which one is multiplied by χ+

p−s,p and the other with χ−p−s,p in eqns. (3.19)
and (3.25), is a factor of (s− p) in the first and s in the second matrix element. So for 0 < s < p
the constellation given on the left hand side of equation (3.28) appears in the τ -dependent linear
combination of characters all the time. We want to replace this by the right hand side using
2p × (3p − 1) matrices, which are multiplied now by the vector χχχp(α) (eq. (2.2)) instead of
χχχirr,p (τ) , but give the same result.

Proof: We plug in the characters from equations (2.3) and (2.4) and find that the factors match
in precisely the way to let the dependence on Θp−s,p and on s drop out.

i(s− p)τ
(

1
pη

[sΘp−s,p + (∂Θ)p−s,p]
)

+ isτ
(

1
pη

[(p− s)Θp−s,p − (∂Θ)p−s,p]
)

= −iτ
1
η
(∂Θ)p−s,p = −1

η
(∇Θ)p−s,p .

Equation (A.4) guides the way to insert a zero (one of two we need to insert here):

− α

αη
(∇Θ)p−s,p −

1
αη

2Θp−s,p +
1

αη
2Θp−s,p

= − 1
α

χ̃p−s,p(α) +
2
α

1
pη

sΘp−s,p +
2
α

1
pη

(∂Θ)p−s,p +
2
α

1
pη

(p− s)Θp−s,p −
2
α

1
pη

(∂Θ)p−s,p

= − 1
α

χ̃p−s,p(α) +
2
α

χ+
p−s,p +

2
α

χ−p−s,p .
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We start with the matrix Sp(τ) and write down its partner 2p × (3p − 1) matrix . A column
must be inserted for each form χ̃s,p(α) after the columns multiplied by χ+

s,p and χ−s,p for 0 < s < p.
In the elements in the latter two columns the respective factors i(s−p)τ and isτ are both replaced
by 2/α. The added column has to contain −1/α. This way we do the following changes for the
blocks of Sp(τ):(

s
pcsl − iτ p−j

p ssl
s
pcsl + iτ j

pssl
p−s
p csl + iτ p−j

p ssl
p−s
p csl − iτ j

pssl

)
→

(
s
pcsl + 2

p
1
αssl

s
pcsl + 2

p
1
αssl − 1

pαssl
p−s
p csl − 2

p
1
αssl

p−s
p csl − 2

p
1
αssl

1
pαssl

)
.

The first two rows of the added columns are zero because these rows do not depend on τ . We see
that the matrix we get is just a composition of the α-dependent S-matrix ,Sp,α, and a subsequent
projection onto the components of χχχp(α) belonging to irreducible representations, as it is expected
to be (cf. (2.5)).
More interesting is the application to the matrix Cirr,p(τ). 2 × 2 blocks on the diagonal get
replaced by 2×3 blocks arranged in a diagonal way, i.e. the whole matrix, called C ′p, is the direct
sum of a 2× 2 unit matrix and these blocks.(

s+p
2p − ip−s

2p τ s
2p + i s

2pτ
p−s
2p + ip−s

2p τ 2p−s
2p − i s

2pτ

)
→

(
s+p
2p + 1

2pα
s
2p + 1

2pα − 1
2pα

p−s
2p − 1

2pα
2p−s
2p − 1

2pα
1

2pα

)
︸ ︷︷ ︸

(C′
p)s(α)

,

C ′p(α) = 1l2×2 ⊕
p−1⊕
s=1

(C ′p)s(α) .(3.29)

Now the matrix C ′p(α) encodes the τ -dependent linear combinations of characters given by Cirr,p,
for which Sp gives their S-transformation, as τ -independent linear combinations of these characters
and the forms χ̃s,p(α). Furthermore we use these linear combinations also in our extended block
diagonalisation method, as we demand the matrices Cp to contain the matrix C ′p(α) in the rows
corresponding to the irreducible representations.

3.2.3. Calculation of Pp. For the calculation of Pp we need the matrices Sp and Kp. From the
considerations for p = 2 and p = 3 in appendix C we can directly do the step to arbitrary p. The
following generalisation from C2(α) (eq. C.16) and C3(α) (eq. C.17) suggests itself:

Cp(α) = 1l2×2 ⊕
p−1⊕
s=1

Cp,s(α) ,(3.30)

Cp,s(α) =


p+s
2p + 1

pα
s
2p + 1

pα − 1
2pα

p−s
2p − 1

pα
2p−s
2p − 1

pα
1

2pα
p+s
p + 2

pα
2p+s

p + 2
pα − 1

pα

 .

Its inverse is

Cp
−1(α) = 1l2×2 ⊕

p−1⊕
s=1

Cp,s
−1(α) ,

Cp,s
−1(α) =

 2 1 −1
2

−1 0 1
2

sα + 2 (p + s)α + 2 −p
2α

 .

We now calculate the α-independent S-matrix, Sp, block by block using eq. (3.22). With the
blocks of Sp,α (eq. (2.5)) we have to determine the following expressions:

S(p)0,lCp,l
−1(α) ,

Cp,s(α)S(p)s,0 ,

Cp,s(α)S(p, α)s,lCp,l
−1(α) .
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The block S(p)0,0 is not touched at all. S(p)0,l and S(p)s,0, for 0 < s, l < p, are also not changed
by the multiplication. And the last product gives

S(p)s,l = Cp,s(α)S(p, α)s,lCp,l
−1(α) =

2√
2p

(−1)p+l+s ×(3.31) 
s
p cos (π sl

p ) + p−l
p sin (π sl

p ) s
p cos (π sl

p )− l
p sin (π sl

p ) 0
p−s
p cos (π sl

p )− p−l
p sin (π sl

p ) p−s
p cos (π sl

p ) + l
p sin (π sl

p ) 0
2 cos (π sl

p ) + 2 sin (π sl
p ) 2 cos (π sl

p ) + 2 sin (π sl
p ) − sin (π sl

p )

 .

We plug the matrix elements of Sp into our result for Kp in eq. (3.24) (we have set k(s)
1 = k(s)

2 =
0):

Kp = Kp,I ⊕
p−1⊕
l=1

Kp,l ,(3.32)

Kp,0 =

(√
2p3 0
0 (−1)p+1

√
2p3

)
,

Kp,l =


(−1)p+l+1

√
p
2 s1l (−1)p+l

√
2
p3 (c1l − ls1l) 0

(−1)p+l
√

p
2 s1l (−1)p+l+1

√
2
p3 (c1l + (p− l)s1l) 0

0 0 1

 .

The matrices Kp and Sp determine Pp through equation (3.23). Explicitly we get for Pp:

Pp =


P (p)0,0 P (p)0,1 . . . P (p)0,p−1

P (p)1,0 P (p)1,1 . . . P (p)1,p−1
...

...
. . .

...
P (p)p−1,0 P (p)p−1,1 . . . P (p)p−1,p−1

 ,(3.33)

P (p)0,0 =
1√
2p

(
p (−1)p+1p
p −p

)
,

P (p)0,l =
2√
2p

(
0 (−1)p+l+1 2

ps1l 0
0 −2

ps1l 0

)

P (p)s,0 =
1√
2p

 s (−1)s+1s
p− s (−1)s+1(p− s)
2p 2(−1)s+1p

 ,

P (p, α)s,l =


(−1)s+1 ssl

s1l
(−1)s+1 2

p2 (scsls1l − sslc1l) 0
(−1)s ssl

s1l
(−1)s+1 2

p2 ((p− s)csls1l + sslc1l) 0

0 (−1)s+1 4
p (csl + ssl) s1l (−1)p+s+l+1

√
2
pssl

 .

If we plug equation (3.23) into eq. (3.10) the pre-fusion coefficients are given by the ”generalised”
Verlinde formula:

(3.34) Np,I = SpKpMp,I(Kp)−1Sp .

We have now all ingredients to carry through calculations for any value of p in our extension of
the method of Fuchs et. al.. Pp is also in the general case invertible because with the invertible
matrix Sp,α also Sp has to be invertible and Kp has been constructed as a full rank matrix.

4. Projection of The Extended Block Diagonalisation Method on Irreducible
Representations

This extension to indecomposable representations reduces in every step by simple projection on
the first two rows and columns of every 2× 3, 3× 2 and 3× 3 block to the original work of Fuchs
et al.. This is also shown in this section in line with the proof that the results for the pre-fusion
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rules of irreducible times irreducible representations are the same in the small and the extended
version. For this task we change the sequence of the representations from the groups of three –
two irreducible and one indecomposable representations – to the following one:

[h1,p] , [h1,2p] , [h1,1] , [h1,2p+1] , [h1,2] , [h1,2p+2] , . . . , [h1,p−1] , [h1,3p−1] ,(4.1) [
h̃1,p+1

]
,
[
h̃1,p+2

]
, . . . ,

[
h̃1,2p−1

]
with the indecomposable representations all put to the end. This leads to the permutation of
both rows and columns in the matrices Sp, Kp, Pp, Mp,I and finally Np,I . Also the sequence of
the latter two groups of matrices is changed, as the index I is affected by the same permutation.
The reason is the form all these matrices take after the permutation. All the zeros, which we
inserted in some matrices and consequently appeared in other matrices are grouped together with
the indecomposable representations in the last columns.
We introduce the following notation, which tells us that a matrix has some form without specifying
all matrix elements or the size of the matrix. The matrix Sp has now the form (cf. eq. (3.31)):

Sp =


S(p) 0

 .

This states that the box on the upper left contains exactly the matrix S(p) (eq. (3.21)), the box at
the bottom contains the other a priori non-zero elements of Sp and on the upper right all matrix
elements are zero. With this notation we give the statement, which we want to proof.

Proposition: The pre-fusion coefficients matrices, Np,I , each contain the coefficients of the
”small” pre-fusion algebra, Nirr,p,I , calculated in [FHST04] for 0 < I ≤ 2p in the following form:

(4.2) Np,I =


Nirr,p,I 0

 .

Remark: We call the matrices, which appear in the ”small” block diagonalisation method (cf.
[FHST04]) and correspond to Kp, Pp, Mp,I and Np,I as defined for the extended one, Kirr,p, Pirr,p,
Mirr,p,I and Nirr,p,I , respectively.

Proof: The only coefficients of the matrix Kp, which are different from zero and do not come
from the matrix Kirr,p, are the additional diagonal matrix elements. The permutation of rows
and columns leaves them on the diagonal and assembles them in a block, which is equal to the
unit matrix in p− 1 dimensions (cf. eq. (3.24)):

Kp =


Kirr,p 0

0 1l


.
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The matrix P consequently looks like

(4.3) Pp = SpKp =


Pirr,p 0

 .

Furthermore we need the form of the inverse of Pp. As (Kp)−1 is the direct sum of (Kirr,p)−1 and
the unit matrix, 1l(p−1)×(p−1), we have

(4.4) (Pp)−1 = (Kp)−1Sp =


(Pirr,p)−1 0


.

We also note, that the last p− 1 rows of this matrix are equal to those of the S-matrix, Sp.
We construct the matrices Mp,I for 0 < I ≤ 2p in the new sequence. For each block defined
in equation (3.14) (in the sequence of representations we used there) the element (Mp,I,n)13 =
(Pp)3n+2

I is zero (cf. eq. (3.33)). These zeros are of interest because the permutation to the new
sequence of representations bring them from the 5th, 8th, 11th etc. column, where they are not
on the diagonal, to a new position in the last p− 1 columns and the first 2p rows, which need to
be zero, as we will see next. Hence Mp,I appears in the form

(4.5) Mp,I =


Mirr,p,I 0

0

 .

We end up with the product (see eqns. (4.3), (4.5) and (4.4)) for 0 < I ≤ 2p

Np,I = PpMp,I(Pp)−1

=


Pirr,p 0




Mirr,p,I 0

0




(Pirr,p)−1 0


,

which has the form given in eq. (4.2).

5. Equivalence of Both Approaches

The limit-Verlinde formula, which we have learned about in section 2, expresses the possibility
to simultaneously diagonalise the set of matrices Np,I(α). Unfortunately these are not the matri-
ces of pre-fusion coefficients as in the case of rational conformal field theories. They rather only
become matrices of pre-fusion coefficients after the limit α → 0 has been taken – to be precise
we can map these pre-fusion coefficients then to the proposed true fusion coefficients in an unam-
biguous way. But still it gives us the possibility to write the equation for the matrix elements of
Np,I(α) (2.9) as

(5.1) Np,I(α) = Sp,αMdiag,p,α,ISp,α
−1 ,
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with Mdiag,p,α,I given by

Mdiag,p,α,I = diag

(
(Sp,α)I

1

(Sp,α)3
1 ,

(Sp,α)I
2

(Sp,α)3
2 , . . . ,

(Sp,α)I
3p−1

(Sp,α)3
3p−1

)
,

One can also introduce the matrix Kdiag,p,α defined as the diagonal matrix with the reciprocal
value of the elements of the vacuum row of Sp,α on the diagonal,

(5.2) Kdiag,p,α = diag

(
1

(Sp,α)3
1 ,

1
(Sp,α)3

2 , . . . ,
1

(Sp,α)3
3p−1

)
,

which of course commutes in equation (5.1) with the matrices Mdiag,p,α,I , because these are also
diagonal. This way we are able to see it parallel to our earlier notation. Mdiag,p,α,I is given by
the I-th row of the product Sp,αKdiag,p,α and

Np,I(α) = Sp,αKdiag,p,αMdiag,p,α,IKdiag,p,α
−1Sp,α

−1 .

This gives a more rounded picture and helps us to show the central theorem of this paper.

Theorem: The pre-fusion coefficients calculated with the limit-Verlinde formula are the same
as the ones calculated with the extended block diagonalisation method:

(5.3) lim
α→0

Nij
k(α) = (Np,I)j

k .

Proof: We plug equations (5.1)and (3.34) into eq. (5.3) and have

(5.4) lim
α→0

(Sp,αMdiag,p,α,ISp,α) = SpKpMp,I(Kp)−1Sp .

We insert two unit matrices on the left hand side of this equation:

Sp,αMdiag,p,α,ISp,α = Sp,αEp,αEp,α
−1Mdiag,p,α,IEp,αEp,α

−1Sp,α

with Ep,α defined as

(5.5) Ep,α := Sp,α
−1Sp = Sp,αSp ,

in order to have

(5.6) Sp,αMdiag,p,α,ISp,α = SpEp,α
−1Mdiag,p,α,IEp,αSp ,

With a block diagonal ansatz one can directly calculate the blocks of Ep,α with equation (5.5):

Ep,α = 1l2×2 ⊕
p−1⊕
s=1

(Ep,α)s

(Ep,α)s = S(p, α)s,sS(p)s,s =


s
p −

2
pα

s
p −

2
pα

1
pα

p−s
p + 2

pα
p−s
p + 2

pα − 1
pα

2− (p− s)α 2 + sα 0

 .

where we used the blocks from eqns. (2.5) and (3.31).
We are going to show that the product Ep,α

−1Mdiag,p,α,IEp,α has a well defined limit for α → 0.
This is not clear. For the whole term on the right hand side of equation (5.6) this limit is well
defined. They are the coefficients Nij

k(α). But still singular terms in the mentioned product could
drop out through the multiplication of Sp from both sides.
We simply calculate first the matrices Mdiag,p,α,I . We need to consider the following cases. For I =
1, 2 the matrices Mdiag,p,α,I differ by minus signs. There are three more groups to be distinguished,
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which belong each to one row of the 3× 3 blocks of Sp,α. We use again the same abbreviations as
for Sp,α in eq. (2.5).

Mdiag,p,α,I = (Mdiag,p,α,I)0 ⊕
p−1⊕
l=1

(Mdiag,p,α,I)l(5.7)

I = 1, 2 : (Mdiag,p,α,I)0 =
(

p 0
0 (−1)Ipp

)

(Mdiag,p,α,I)l = (−1)I(p−l)


−pα

αc1l+2s1l
0 0

0 −pα
αc1l+2s1l

0
0 0 0


I = 3, 6, . . . : (Mdiag,p,α,I)0 =

(
I 0
0 (−1)II

)

(Mdiag,p,α,I)l =

(−1)I+1 IαcIl+2sIl
αc1l+2s1l

0 0
0 (−1)I+1 IαcIl+2sIl

αc1l+2s1l
0

0 0 (−1)I+1 sIl
s1l


I = 4, 7, . . . : (Mdiag,p,α,I)0 =

(
p− I 0

0 (−1)I(p− I)

)

(Mdiag,p,α,I)l =

(−1)I+1 (p−I)αcIl−2sIl

αc1l+2s1l
0 0

0 (−1)I+1 (p−I)αcIl−2sIl

αc1l+2s1l
0

0 0 (−1)I sIl
s1l


I = 5, 8, . . . : (Mdiag,p,α,I)0 =

(
2p 0
0 (−1)I2p

)

(Mdiag,p,α,I)l =

(−1)Ipα (p−l)αsIl−2cIl

αc1l+2s1l
0 0

0 (−1)I+1pα lαssl+2cIl
αc1l+2s1l

0
0 0 0

 .

For these four cases we can now calculate the product

M̃α,I = Ep,α
−1Mdiag,p,α,IEp,α = (M̃α,I)0 ⊕

p−1⊕
l=1

[
(−1)I(M̃α,I)l

]
(5.8)

(M̃α,I)0 = (Mdiag,p,α,I)0
I = 1, 2 :

(M̃α,I)l = (−1)(p+l)

−
l1

αc1l+2s1l
− l1

αc1l+2s1l
0

l2
αc1l+2s1l

l1
αc1l+2s1l

0
0 0 − αp

αc1l+2s1l


I = 3, 6, 9, . . . :

(M̃α,I)l =


− (Il1cIl+2psIl)s1l−l2c1lsIl

ps1l(αc1l+2s1l)
− l1(Is1lcIl−c1lsIl)

ps1l(αc1l+2s1l)
0

l1(Is1lcIl−c1lsIl)
ps1l(αc1l+2s1l)

(Il2cIl−2psIl)s1l−l1c1lsIl

ps1l(αc1l+2s1l)
0

0 0 − IαcIl+2sIl
αc1l+2s1l


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I = 4, 7, 10, . . . :

(M̃α,I)l =


− ((p−I)l1cIl−2psIl)s1l+l2c1lsIl

ps1l(αc1l+2s1l)
− l1((p−I)s1lcIl+c1lsIl)

ps1l(αc1l+2s1l)
0

l1((p−I)s1lcIl+c1lsIl)
ps1l(αc1l+2s1l)

((p−I)l2cIl+2psIl)s1l+l1c1lsIl

ps1l(αc1l+2s1l)
0

0 0 − (p−I)αcIl−2sIl

αc1l+2s1l


I = 5, 8, 11, . . . :

(M̃α,I)l =


−2l1(cIl+sIl)

αc1l+2s1l
−2l1(cIl+sIl)

αc1l+2s1l

l1sIl
αc1l+2s1l

2l2(cIl+sIl)
αc1l+2s1l

2l2(cIl+sIl)
αc1l+2s1l

− l2sIl
αc1l+2s1l

l3(2−l)αpsIl

αc1l+2s1l

l3(2−l)αpsIl

αc1l+2s1l
−pα(2cIl−(l3−αl)sIl)

αc1l+2s1l


with l1 = 2 + lα, l2 = 2− (p− l)α and l3 = 2 + (p− l)α. Hence these matrices are well-defined in
the limit of α → 0 and we can take the limit of M̃α,I rather than the whole product in equation
(5.6):

(Np,I)j
k = Sp lim

α→0

(
Ep,α

−1Mdiag,p,α,IEp,α

)
Sp .

We now continue with the right hand side of equation (5.4) and see that we need to show that

(5.9) KpMp,I(Kp)−1 = lim
α→0

(
Ep,α

−1Mdiag,p,α,IEp,α

)
.

Therefore we take matrix Kp and Pp from eqns. (3.32) and (3.33). One can simply read off the
matrices Mp,I from the rows of Pp (see eq. (3.14)). We plug these matrices into the left hand side
of equation (5.9):

M̃I = KpMp,I(Kp)−1 = (M̃I)0 ⊕
p−1⊕
l=1

(M̃I)l(5.10)

(M̃I)0 = (Mdiag,p,α,I)0

I = 1, 2 :

(M̃I)l = (−1)I(p+l)

− 1
s1l

− 1
s1l

0
1

s1l

1
s1l

0
0 0 0


I = 3, 6, 9, . . . :

(M̃I)l = (−1)I

−
(IcIl+psIl)s1l−c1lsIl

ps1l
2 − Is1lcIl−c1lsIl

ps1l
2 0

Is1lcIl−c1lsIl
ps1l

2
(IcIl−psIl)s1l−c1lsIl

ps1l
2 0

0 0 − sIl
s1l


I = 4, 7, 10, . . . :

(M̃I)l = (−1)I

−
((p−I)cIl−psIl)s1l+c1lsIl

ps1ls1l
− (p−I)s1lcIl+c1lsIl

ps1l
2 0

(p−I)s1lcIl+c1lsIl

ps1ls1l

((p−I)cIl+psIl)s1l+c1lsIl

ps1l
2 0

0 0 − sIl
s1l


I = 5, 8, 11, . . . :

(M̃I)l = (−1)I

−
2(cIl+sIl)

s1l
−2(cIl+sIl)

s1l

sIl
s1l

2(cIl+sIl)
s1l

2(cIl+sIl)
s1l

− sIl
s1l

0 0 0

 .

Finally we compare the matrices M̃I with the respective matrices M̃α,I , which constitute the right
hand side of said equation (5.9), and notice that the limit of the latter matrices for α → 0 yields
the former ones.
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The precise connection between Mdiag,p,α,I and Mp,I and between Kdiag,p,α and Kp can be
clarified a bit more. We take in eq. (5.9) the matrix Kp and its inverse to the other side. As they
do not depend on α, we can take them into the limit.

Mp,I = lim
α→0

(
(Kp)−1Ep,α

−1Mdiag,p,α,IEp,αKp

)
.

This gives us already the relation between Mdiag,p,α,I and Mp,I , but we want to have the other
one simultaneously, as we look at the Verlinde formula.
Kdiag,p,α commutes with Mdiag,p,α,I . So if we insert once the unit matrix, we get

(5.11) Mp,I = lim
α→0

(
(Kp)−1Ep,α

−1Kdiag,p,αMdiag,p,α,IK
−1
diag,p,αEp,αKp

)
.

We then define the matrix

(5.12) Fp,α := K−1
diag,p,αEp,αKp .

This can be easily calculated with equations (5.2), (5.5) and (3.32):

Fp,α = 1l2×2 ⊕
p−1⊕
j=1

(Fp,α)j

(Fp,α)j =
1

p3α2

0 2(jα− 2)s1j (c1jα + 2s1j) (−1)j+p+1
√

2p (c1jα + 2s1j)
0 2((p− j)α + 2)s1j (c1jα + 2s1j) (−1)j+p

√
2p (c1jα + 2s1j)

1 −2pαs1j (c1jα + 2s1j) 0

 .

With these matrices we have the following situation derived from the limit-Verlinde formula (eq.
(5.1)):

Np,I(α) = Sp,αEp,α︸ ︷︷ ︸
=Sp

Ep,α
−1Kdiag,p,αFp,α︸ ︷︷ ︸

=Kp

·(5.13)

·Fp,α
−1Mdiag,p,α,IFp,α Fp,α

−1Kdiag,p,α
−1Ep,α︸ ︷︷ ︸

Kp
−1

Ep,α
−1Sp,α

−1︸ ︷︷ ︸
=Sp

.

One finds that the three matrices in the middle have a regular limit

(5.14) lim
α→0

(
Fp,α

−1Mdiag,p,α,IFp,α

)
= Mp,I

and has the ”generalised” Verlinde formula for the extended block diagonalisation method.
We have shown in this section, that both approaches including the indecomposable representa-
tions, which we learned about in the sections 2 and 3, give the same pre-fusion rules. Moreover
it becomes also clear at this point that Fuchs et al. found in their work a way to calculate the
pre-fusion rules for irreducible representations in a perhaps mathematically more appealing and
certainly algebraically better motivated way, which are the same as the ones given by the limit-
Verlinde formula. On the other hand the connection to the work of MF provides its CFT-side
motivation, needs less many different matrices and is also easier to calculate. Moreover the limit in
the limit-Verlinde formula has now found its justification through its equality to the ”generalised”
Verlinde formula in our extension of the block diagonalisation method.

6. BPZ-Like Closed Forms of the Fusion Rules

Finally we want to show the following theorem leading to the pre-fusion algebra of the triplet
W-algebra W(2, (2p− 1)⊗3) in a BLZ-like closed form
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Theorem: The generalised Verlinde formulas in equations (2.9) and (3.34) give the following
decomposition of the fusion products of irreducible and indecomposable representations:

[h1,k]⊗f [h1,l] =
k+l−1∑

m=|k−l|+1
step 2

λm ,(6.1)

[h1,3p−k]⊗f [h1,3p−l] =
k+l−1∑

m=|k−l|+1
step 2

λm ,(6.2)

[h1,k]⊗f [h1,3p−l] =
k+l−1∑

m=|k−l|+1
step 2

πm ,(6.3)

[
h̃1,2p−r

]
⊗f [h1,2p+s] = −

min(r+s−1,
2p−r−s−1)∑
t=|r−s|+1

step 2

[
h̃1,2p−t

]
+

min(p−1+[(p+r+s) mod 2],
2p−r−s−1)∑

t=max(1−[(r+s) mod 2],
s−r+1)
step 2

ρt ,(6.4)

[
h̃1,2p−r

]
⊗f [h1,2p] =

p−1+[(p+r) mod 2]∑
t=1−[r mod 2]

step 2

ρt ,(6.5)

[
h̃1,2p−r

]
⊗f [h1,p] =

p−1+[(p+r) mod 2]∑
t=1−[r mod 2]

step 2

ρp−t ,(6.6)

[
h̃1,2p−r

]
⊗f [h1,p−s] =

min(r+s−1,
2p−r−s−1)∑
t=|r−s|+1

step 2

[
h̃1,p+t

]
+


r−s−1∑

t=1−[(r+s) mod 2]
step 2

ρp−t r > s

0 else

(6.7)

+


p−1+[(p+r+s) mod 2]∑

t=r+s+1
step 2

ρp−t r + s < p

0 else

,

[
h̃1,2p−r

]
⊗f

[
h̃1,2p−s

]
= 2

p−1+[(p+r+s) mod 2])∑
t=1−[(r+s) mod 2]

step 2

ρt(6.8)

with 0 < k, l ≤ p and 0 < r, s < p and

λm =

{
[h1,m] 0 < m ≤ p

[h1,2p−m] + 2 [h1,4p−m] p < m < 2p
,(6.9)

πm =

{
[h1,3p−m] 0 < m ≤ p

[h1,m+p] + 2 [h1,m−p] p < m < 2p
,(6.10)

ρt =


2 [h1,p] t = p

2 [h1,2p] t = 0

4 ([h1,t] + [h1,2p+t]) 0 < t < p

.(6.11)

Proof: The decompositions of the products of irreducible representations in equations (6.1)-(6.3),
are proven in section 4 to result from the work of Fuchs et al., [FHST04]. There it is shown that
the extended version leads to the same decompositions for these products.
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We bear in mind that the matrices Mp,I also fulfil the pre-fusion algebra:

(6.12) Mp,IMp,J =
3p−1∑
K=1

NK
IJMp,K .

Because the matrix elements (Mp,I)1,1 are strictly positive, there are no sums of matrices Mp,I ,
which are equal to the zero matrix. Thus these decompositions of products Mp,IMp,J are unique.
For the fusion product in equation (6.4) we get the product

Mh
h̃2p−r

iM[h2p+s] = P0 ⊕
p−1⊕
j=1

Pj

P0 =
(

2p(p− s) 0
0 2(−1)r+sp(p− s)

)

Pj =

0 (−1)r+s+1 4
pssj (crj + srj) (−1)r+s+p+j+1

√
2
p

srjssj

s1j

0 0 0
0 0 0

 .

We can now compute the sums of matrices Mp,I (see (6.12)), which correspond to the proposed
fusion rules, and compare them with this product. Plugging in the corresponding 2× 2 blocks of
Mp,I and Mp,I,0 (eqns. (3.14), (3.33)) for the representations in the decomposition in eq. (6.4)
directly gives P0 in all cases, which need to be distinguished.
For the 3×3 blocks we also start from the proposed decomposition and add up the corresponding
blocks, Mp,I,j . First of all we notice that we encounter only non-zero matrix elements, where also
Pj is different from zero. This is the case for the indecomposable representations, because here
the matrix elements (P (p, α)s,l)3,1 = 0 for all 0 < s, l < p (cf. (3.33)). But also for the three
possible cases of summands, ρt, in equation (6.11) the 3× 3 blocks of the matrices Mp,I have or
add up to have only the matrix element (1, 2) different from zero: The first column of P (p)0,l and
(P (p, α)s,l)1,1 + (P (p, α)s,l)2,1 are zero. The third column of both P (p)0,l and P (p, α)s,l is only
non-zero in the rows corresponding to the indecomposable representations.
This leaves us for the matrix element (1, 3) with the sum of elements (Mp,I,j)1,3 = (−1)p+I+j+1

√
2
psIj ,

I = 5, 8, 11, . . ., corresponding to the indecomposable representations appearing in equation (6.4).
Here we use identity,

min(r+s−1
2p−r−s−1)∑
I=|r−s|+1

step2

sIj =
r+s−1∑

I=|r−s|+1
step2

sIj =
srjssj

s1j
,(6.13)

For the first step index relabeling in part of the sum for the case of r+s > p is needed. Expressed
by exponential functions the second step follows from straight forward calculations. We directly
get the matrix element (Pj)1,3.
At last we need to get the matrix element (Pj)1,2, which we will treat in more detail, as it is not
so straight forward. From the decomposition in equation (6.4) we get for this element:

(6.14)

min(r+s−1,
2p−r−s−1)∑
t=|r−s|+1

step 2

4
p
(−1)t (stj + ctj) s1j −

min(p−1+[(p+r+s) mod 2],
2p−r−s−1)∑

t=max(1−[(r+s) mod 2],
s−r+1)
step 2

4
p
s1j


1 t = 0

(−1)p+j t = 0

2(−1)tctj 0 < t < p

.
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We add the zero,

4
p
(−1)r+s+1s1j

p−1+[(p+r+s) mod 2]∑
t=1−[(r+s) mod 2]

step 2

γt = 0 ,(6.15)

γt =


1 t = 0

(−1)j t = p

2ctj else
,

and note that (r + s + 1) mod 2 = t mod 2. So the second half of equation (6.14) and this zero
leaves us with remainders depending on the values of r, s and p, which we simplify as follows:
For the case of r < s we are left with

s−r−1∑
t=1−[(r+s) mod 2]

{ 1 t = 0
2ctj else

}
=

s−r−1∑
t=r−s+1

ctj

and for r + s > p with

p−1+[(p+r+s) mod 2]∑
t=2p−r−s+1

{
(−1)j t = p

2ctj else

}
=

s+r−1∑
t=2p−r−s+1

ctj .

The range of the index of these sums then connects directly to the one of the sum in the first half
of equation (6.14), which leads in all cases to the following sum of cosines:

r+s−1∑
t=r−s+1

step2

ctl =
sslcrl

s1l

Finally this results in the matrix element (Pj)1,2 after applying equation (6.13) to the sums of stl

once more. This proofs the decomposition, eq. (6.4).
For the decompositions, eqns. (6.5) and (6.8), the 2× 2 blocks are easily checked to be the same
on both sides. The 3× 3 blocks in these cases are all on both sides zero. For the decompositions
this is seen through equation (6.15).
The associativity of the pre-fusion product determines the decompositions of the pre-fusion prod-
ucts still left open, eqns. (6.6) and (6.7):[

h̃1,2p−r

]
⊗f [h1,p−k] =

[
h̃1,2p−r

]
⊗f [h1,2p+k]⊗f [h1,3p−1]

with 0 ≤ k < p. The result immediately follows with two pre-fusion products from our previous
findings:

ρt ⊗f [h1,3p−1] =


2 [h1,2p] t = p

2 [h1,p] t = 0

4 ([h1,3p−t] + [h1,p−t]) 0 < t < p

= ρp−t ,

[
h̃1,2p−t

]
⊗f [h1,3p−1] = −

[
h̃1,p+t

]
+ ρp−t ,

At this point we can now apply the replacement rules from section 2 to the pre-fusion rules,
eqns. (6.1)-(6.8).
Only in the fusion products of two irreducible representations the linear combinations needed
to be replaced are not immediately visible. We have to distinguish two cases. If l + m in the
products, eqns. (6.1)-(6.3), are smaller or equal p+1, there are only multiplicities of one appearing
in the decomposition, thus no replacements. Otherwise the sum splits into two parts due to the
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distinction of cases in λm and πm (eqns. (6.9), (6.10)), as for example for (6.1):

[h1,k]⊗f [h1,l] =
2p−k−l−1∑
m=|k−l|+1

step 2

[h1,m] +
p−1+[(p+k+l) mod 2]∑

m=2p−k−l+1
step 2

[h1,m]

︸ ︷︷ ︸
=

Pk+l−1
m=p+1−[(p+k+l) mod 2]

step 2

[h1,2p−m]

+
k+l−1∑

m=p+1+[(p+k+l) mod 2]
step 2

(
[h1,2p−m] + 2 [h1,4p−m]

)

=
2p−k−l−1∑
m=|k−l|+1

step 2

[h1,m] + [h1,p] +
k+l−1∑

m=p+1+[(p+k+l) mod 2]
step 2

[
h̃1,m

]
,

where the underlined terms are defined to only appear for odd k + l + p. Equation (6.3) works
alike and equation (6.2) is exactly the same. In summary we get:

[h1,k]⊗f [h1,l] = [h1,3p−k]⊗f [h1,3p−l](6.16)

=



k+l−1∑
m=|k−l|+1

step 2

[h1,m] 1 < k + l ≤ p + 1

[h1,p] +
2p−k−l−1∑
m=|k−l|+1

step 2

[h1,m] +
k+l−1∑

m=p+1+[(p+k+l) mod 2]
step 2

[
h̃1,m

]
k + l > p + 1

[h1,k]⊗f [h1,3p−l] =



k+l−1∑
m=|k−l|+1

step 2

[h1,3p−m] 1 < k + l ≤ p + 1

[h1,2p] +
2p−k−l−1∑
m=|k−l|+1

step 2

[h1,3p−m]

+
k+l−1∑

m=p+1+[(p+k+l) mod 2]
step 2

[
h̃1,3p−m

]


k + l > p + 1

.

This is in exact correspondence to the fusion rules of irreducible representations of the Virasoro
algebra at c = cp,1 proposed by Gaberdiel and Kausch in [GK96a]. Naturally also the fusion
products for p = 2, p = 3 and partially for higher p, which are calculated in the same paper with
their algorithm, are consistent with our result for these fusion products, as well as the following
outcome for all other products, after the replacement has been carried out. For the decompositions
not involving any indecomposable representations before the replacement (eqns. (6.5),(6.6) and
(6.8)) we only deal with ρt, which is replaced by

(6.17) ρt  


2 [h1,p] t = p

2 [h1,2p] t = 0

2
[
h̃1,2p−t

]
0 < t < p

.
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In the other cases we find

[
h̃1,2p−r

]
⊗f [h1,2p+s] =

min(p−1+[(p+r+s) mod 2],
2p−r−s−1)∑

t=max(1−[(r+s) mod 2],
s−r+1)
step 2

ρ̃t ,(6.18)

[
h̃1,2p−r

]
⊗f [h1,p−s] =

min(p−1+[(p+r+s) mod 2],
2p−r−s−1)∑

t=max(1−[(r+s) mod 2],
s−r+1)
step 2

ρ̂t(6.19)

with

ρ̃t =



2 [h1,p] t = p

2 [h1,2p] t = 0[
h̃1,2p−t

]
r − s < t < r + s

2
[
h̃1,2p−t

]
else ,

ρ̂t =



2 [h1,2p] t = p

2 [h1,p] t = 0[
h̃1,p+t

]
r − s < t < r + s

2
[
h̃1,p+t

]
else .

7. Conclusion

In the main part of this paper we have developed an extension of the block diagonalisation
method originally introduced by Fuchs et al. leading to a ”generalised” Verlinde formula. It now
additionally includes the fusion products containing indecomposable representations. It reduces
to its archetype in every step by simple projection on the components representing the irreducible
representations.
The block diagonalisation method finds a (linear) algebraic justification through the parallel to
the semisimple case. It also performs a simultaneous eigen decomposition of matrices of structure
constants of the fusion algebra splitting it into a semisimple algebra and a radical.
The S-matrix, Sp, for the extended block diagonalisation method is calculated from the parameter
dependent S-matrix, Sp,α, appearing in the limit-Verlinde formula by a change of basis of chiral
vacuum torus amplitudes (cf. eqns. (2.1) and (3.22)). Thus we have found a CFT-side motivation
for this approach because Sp gives the S-transformation of the new basis.
We have given a closed form of Sp,α in eq. (2.5). Although Sp,α does not diagonalise the fusion
coefficient matrices, it simultaneously diagonalises a set of matrices depending on α as well. In
the limit α → 0 these matrices are in accord with the fusion rules, which are known with respect
to either the triplet algebra or the Virasoro algebra.
We have seen that the pre-fusion rules, which we get from the limit-Verlinde formula or the block
diagonalisation method for cp,1 models, can not distinguish between indecomposable represen-
tations and certain combinations of irreducible representations. As we discussed in section 2 in
context of the results of the limit-Verlinde formula, this indistinguishability is intrinsic to the
whole calculation on grounds of modular transformations of characters. At that point it was par-
ticularly clear, because the limit α → 0 made the forms used for the calculation of Sp,α linearly
dependent.
Within the in-depth description of this method around the limit-Verlinde formula we have given a
detailed formulation of the replacements needed to compensate these intrinsic effects of the linear
dependence of characters of the relevant representations. We have collected arguments for these
replacements using the quantum numbers of a scaled su(2) subalgebra of the triplet W-algebra
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and unphysical negative coefficients in the decompositions, which are canceled by the replace-
ments.
We have shown that the block diagonalisation method is equivalent to the limit-Verlinde formula:
It gives the same results starting from the same S-matrix, Sp,α. Moreover every matrix in the
block diagonalisation method meets its counterpart related to the limit-Verlinde formula, as it is
seen in eqns. (5.13) and (5.14).
Through this equivalence the justification of the block diagonalisation method is also true for the
limit-Verlinde formula. Here the matrix of simultaneous eigenvectors of the matrices of pre-fusion
coefficients is equal to Sp,αKdiag,p,αFp,α (cf. eq. (5.13)). Furthermore we immediately get the
S-matrix, Sp,α, for the limit-Verlinde formula from a ”more canonical” basis of vacuum torus
amplitudes compared to the blockdiagonalisation method. This basis includes the characters of
irreducible representations, while the change of basis, which leads to the S-matrix of the block
diagonalsiation method, Sp, mixes these characters. In addition only the S-matrix, Sp,α, is needed
in the limit-Verlinde formula to directly calculate the pre-fusion rules.
We have calculated the explicit BPZ-like forms for the pre-fusion rules, which result from either
of the two methods. As these are not the actual fusion rules for the cp,1 models, we have applied
the replacement rules to these expressions as well. Hence we finally got our conjecture, what the
fusion algebra of these models is, in three different forms: At the end of section 2 they are given
by the limit-Verlinde formula and subsequently applied replacement rules, which we cast in the
form of a case differentiation. With the results of section 5 we can replace in this conjecture the
limit-Verlinde formula by the ”generalised” Verlinde formula (eq. (3.34)), which gives the same
results. Finally we provide explicit expressions, which are given by eqns. (6.5), (6.6) and (6.8)
with replacement (6.17), eq. (6.16) and eqns. (6.18)-(6.19).
There are many parallels of the cp,1 models to rational conformal field theories with completely
reducible symmetry algebras and thus with semisimple fusion algebras. Most importantly here a
S-matrix can be calculated from a basis of chiral vacuum torus amplitudes and used in a generali-
sation of the Verlinde formula. It provides us with a well-founded proposition for the fusion rules
of the cp,1 series, justified by many indications, and gives the – seemingly for higher p – correct
result.
There are several important questions, which our work also approaches.
For which logarithmic conformal field theories do we expect to find a generalisation of the Verlinde
formula? How does it look like? Everything points to the need of a basis of chiral vacuum torus
amplitudes including the characters of irreducible representations. The S-transformation of this
basis then determines the S-matrix. Probably it would again depend on a parameter and for the
limit of this parameter to zero become the set of characters of all irreducible and indecomposable
representations.
Then, of course, the question of a proof of the presented Verlinde-like formulas and the fusion
rules, which follow from them after certain well-defined replacements, suggests itself and is con-
nected to the previous questions. We have seen many similarities to semisimple fusion algebras.
This suggests things to be not so different with or without semisimplicity. Still there is the ob-
stacle of the needed replacements, which need to be better understood.
The Verlinde formula in rational conformal field theories has found deep roots in the algebraic
geometric background of these theories. The work on it has gone far into their rigorous formula-
tions. Our findings here give confidence, that this rigorousness is also what lies ahead of us for
certain logarithmic conformal field theories.

Acknowledgements: We would like to thank Hendrik Adorf for reading the script of this paper
with great care. The work of MF is partially supported by the European Union network HPRN-
CT-2002-00325 (EUCLID).

Appendix A. Details on the Choice Inherent in the Forms χ̃λ,p(α)

In this section details are given on the considerations leading to the linear independent set of
forms representing irreducible and indecomposable representations, which is used in section 2 to
calculate the S-matrix Sp,α.
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In this context we have to recall a essential part of the calculation of the partition function of the
cp,1 models in [Flo96] from the characters of the representations of the triplet algebra: Further
forms have been introduced there to solve the problems arising from the specific modular transfor-
mation properties of these characters. In fact the characters of the indecomposable representations
are split into a sum:

χRλ,p =
2
p

[
(p− λ)χR+

λ,p (α) + λχR−λ,p (α)
]

,(A.1)

χR+
λ,p (α) =

1
η

[Θλ,p + iαλ(∇Θ)λ,p] ,

χR−λ,p (α) =
1
η

[Θλ,p − iα(p− λ)(∇Θ)λ,p] ,

where (∇Θ)λ,p is

(A.2) (∇Θ)λ,p = iτ(∂Θ)λ,k =
1
2π

log(q)(∂Θ)λ,k .

The partition function is given in terms of the characters of irreducible representations and these
forms and stays modular invariant for α → 0.
Concerning our goal to find a 3p− 1× 3p− 1 S-matrix for the cp,1 models there are now linearly
independent sets of characters of irreducible representations and linear combination of χR+

λ,p (α)
and χR−λ,p (α) with (3p−1) elements. What is more, these sets close under modular transformations
of their argument, i.e. any of these 3p−1 forms evaluated at γτ , with γ ∈ SL(2, Z), can be written
as a linear combination of the same forms evaluated at τ .
The possible p− 1 linear combinations of χR+

λ,p (α) and χR−λ,p (α) are parametrised by x ∈ C in the
following way:

(A.3) χ̃λ,p(α, x) =
2
p

[
(p + x− λ)χR+

λ,p (α) + (λ− x)χR−λ,p (α)
]

.

The results for the fusion rules do not depend on the choice of x. The forms χ̃λ,p(α, x) surely
depends on x. However, when we insert the forms χR+

λ,p (α) and χR−λ,p (α) (eq. (A.1)) into equation
(A.3), it emerges, that it only depends on the product of x and α:

χ̃λ,p(α, x) =
1
η

[2Θλ,p + 2xiα(∇Θ)λ,p] .

We can redefine α in a convenient way to incorporate x. Because we take the limit α → 0 at the
end, this does not change the results.
For the following x = −i/2 is chosen, which corresponds for p = 2 to the choice made in [Flo97]:

(A.4) χ̃λ,p(α) = χ̃λ,p(α,−i) =
1
η

[2Θλ,p + α(∇Θ)λ,p] .

The factor 2/p appears in equation (A.3) in contrast to [Flo97] in order to have a multiplicity
- which a priori may be chosen - of 2 in front of the Θλ,p/η term in χ̃λ,p(α,−i), instead of a
multiplicity of p. The result at the end depends on the choice of the multiplicity. Another multi-
plicity in χ̃λ,p(α, x) leads qualitatively to the correct fusion rules, but with different multiplicities.
Our choice is the one, for which the forms χ̃λ,p(α) become the characters of the indecomposable
representations for α → 0.

Appendix B. Fusion rules for p = 2 and p = 3

In tables 1 and 3 we give the pre-fusion rules resulting from the limit-Verlinde formula – and
thus also from the extended block diagonalisation method – for the c2,1 = −2 and the c3,1 = −7
models, respectively. The fusion rules, which are the outcome, after the replacement rules around
eq. (2.11) have been applied, are listed in tables 2 and 4.
In the next subsection we go through a few examples of the application of these replacement rules
for p = 3.
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⊗f

[
−1

8

] [
3
8

]
[0] [1]

[
0̃
]

[
−1

8

]
2 [0] + 2 [1] 2 [0] + 2 [1]

[
−1

8

] [
3
8

]
2
[
−1

8

]
+ 2

[
3
8

][
3
8

]
2 [0] + 2 [1] 2 [0] + 2 [1]

[
3
8

] [
−1

8

]
2
[
−1

8

]
+ 2

[
3
8

]
[0]

[
−1

8

] [
3
8

]
[0] [1]

[
0̃
]

[1]
[

3
8

] [
−1

8

]
[1] [0] 4 [0] + 4 [1]−

[
0̃
][

0̃
]

2
[
−1

8

]
+ 2

[
3
8

]
2
[
−1

8

]
+ 2

[
3
8

] [
0̃
]

4 [0] + 4 [1]−
[
0̃
]

8 [0] + 8 [1]

Table 1: Pre-fusion rules for p=2

⊗f

[
−1

8

] [
3
8

]
[0] [1]

[
0̃
]

[
−1

8

] [
0̃
] [

0̃
] [

−1
8

] [
3
8

]
2
[
−1

8

]
+ 2

[
3
8

][
3
8

] [
0̃
] [

0̃
] [

3
8

] [
−1

8

]
2
[
−1

8

]
+ 2

[
3
8

]
[0]

[
−1

8

] [
3
8

]
[0] [1]

[
0̃
]

[1]
[

3
8

] [
−1

8

]
[1] [0]

[
0̃
][

0̃
]

2
[
−1

8

]
+ 2

[
3
8

]
2
[
−1

8

]
+ 2

[
3
8

] [
0̃
] [

0̃
]

4
[
0̃
]

Table 2: Fusion rules for p=2

⊗f

[
−1

3

] [
5
12

]
[0] [1][

−1
3

] [
−1

3

]
+ 2 [0] + 2 [1][

5
12

] [
5
12

]
+ 2

[
−1

4

]
+ 2

[
7
4

] [
−1

3

]
+ 2 [0] + 2 [1]

[0]
[
−1

3

] [
5
12

]
[0]

[1] 2 [0] + 2 [1] 2
[
−1

4

]
+ 2

[
7
4

]
[1] [0] +

[
−1

3

][
0̃
]

2
[
−1

3

]
+ 4 [0] + 4 [1] 2

[
5
12

]
+ 4

[
−1

4

]
+ 4

[
7
4

] [
0̃
] 2[− 1

3 ]+4[0]

+4[1]−[0̃][
−1

4

]
2
[
−1

4

]
+ 2

[
7
4

]
2 [0] + 2 [1]

[
−1

4

] [
5
12

]
+
[

7
4

][
7
4

] [
5
12

] [
−1

3

] [
7
4

] [
−1

4

][
−̃1

4

]
2
[

5
12

]
+ 4

[
−1

4

]
+ 4

[
7
4

]
2
[
−1

3

]
+ 4 [0] + 4 [1]

[
−̃1

4

]
2[ 5

12 ]+4[− 1
4 ]

+4[ 7
4 ]−

hg− 1
4

i

⊗f

[
0̃
] [

−1
4

] [
7
4

] [
−̃1

4

]
[
0̃
]

4
[
−1

3

]
+ 8 [0] + 8 [1][

−1
4

]
2
[

5
12

]
+
[
−̃1

4

] [
−1

3

]
+ [0][

7
4

]
4
[
−1

4

]
+ 4

[
7
4

]
−
[
−̃1

4

]
[1] [0][

−̃1
4

]
4
[

5
12

]
+ 8

[
−1

4

]
+ 8

[
7
4

]
2
[
−1

3

]
+
[
0̃
]

4 [0] + 4 [1]−
[
0̃
]

4
[
−1

3

]
+ 8 [0] + 8 [1]

Table 3: Pre-fusion rules for p=3
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⊗f

[
−1

3

] [
5
12

]
[0] [1][

−1
3

] [
−1

3

]
+
[
0̃
][

5
12

] [
5
12

]
+
[
−̃1

4

] [
−1

3

]
+
[
0̃
]

[0]
[
−1

3

] [
5
12

]
[0]

[1]
[
0̃
] [

−̃1
4

]
[1] [0] +

[
−1

3

]
[
0̃
]

2
[
−1

3

]
+ 2

[
0̃
]

2
[

5
12

]
+ 2

[
−̃1

4

] [
0̃
]

2
[
−1

3

]
+
[
0̃
]

[
−1

4

] [
−̃1

4

] [
0̃
] [

−1
4

] [
5
12

]
+
[

7
4

][
7
4

] [
5
12

] [
−1

3

] [
7
4

] [
−1

4

][
−̃1

4

]
2
[

5
12

]
+ 2

[
−̃1

4

]
2
[
−1

3

]
+ 2

[
0̃
] [

−̃1
4

]
2
[

5
12

]
+
[
−̃1

4

]
⊗f

[
0̃
] [

−1
4

] [
7
4

] [
−̃1

4

]
[
0̃
]

4
[
−1

3

]
+ 4

[
0̃
][

−1
4

]
2
[

5
12

]
+
[
−̃1

4

] [
−1

3

]
+ [0][

7
4

] [
−̃1

4

]
[1] [0][

−̃1
4

]
4
[

5
12

]
+ 4

[
−̃1

4

]
2
[
−1

3

]
+
[
0̃
] [

0̃
]

4
[
−1

3

]
+ 4

[
0̃
]

Table 4: Fusion rules for p=3

B.1. Demonstration of Replacement Rules for p = 3. The matrix S3,α reads

(B.1)



1
2 r̂ 1

2 r̂ r̂ r̂ 0 r̂ r̂ 0
1
2 r̂ −1

2 r̂ r̂ r̂ 0 −r̂ −r̂ 0
1
6 r̂ 1

6 r̂ −1
6 r̂ − ŝ −1

6 r̂ − ŝ 1
2 ŝ −1

6 r̂ + ŝ −1
6 r̂ + ŝ −1

2 ŝ
1
3 r̂ 1

3 r̂ −1
3 r̂ + ŝ −1

3 r̂ + ŝ −1
2 ŝ −1

3 r̂ − ŝ −1
3 r̂ − ŝ 1

2 ŝ

r̂ r̂ −r̂ + t̂ −r̂ − 1
2 t̂ 0 −r̂ − 1

2 t̂ −r̂ + t̂ 0
1
3 r̂ −1

3 r̂ −1
3 r̂ + ŝ −1

3 r̂ + ŝ −1
2 ŝ 1

3 r̂ + ŝ 1
3 r̂ + ŝ −1

2 ŝ
1
6 r̂ −1

6 r̂ −1
6 r̂ − ŝ −1

6 r̂ − ŝ 1
2 ŝ 1

6 r̂ − ŝ 1
6 r̂ − ŝ 1

2 ŝ

r̂ −r̂ −r̂ − t̂ −r̂ + 1
2 t̂ 0 r̂ − 1

2 t̂ r̂ + t̂ 0


with r̂ =

√
6/3, ŝ =

√
2/(3α) and t̂ = α

√
2. Eq. (2.9) then gives pre-fusion rules listed in table 3.

It is worth going through some particular fusion products to see the problems arising through the
ambiguities in the limit α → 0. In this example there are two indecomposable representations
and two corresponding identities of their characters:

2χ+
i,3 + 2χ−i,3 = χRi,3 i = 1, 2 .

These ”translate” to identities of representations, which shall symbolise their indistinguishabile-
ness in this calculation:

2
[
−1

4

]
+ 2

[
7
4

]
=

[
−̃1

4

]
,

2 [0] + 2 [1] =
[
0̃
]

.(B.2)

Quite typical is the following product:[
−1

4

]
⊗f

[
−1

3

]
= 2

[
−1

4

]
+ 2

[
7
4

]
.
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1 −1
1
1
0
0




2
0
1
0




2
0
0
1



−2
2
1
1


Table 5: Eigenvalues and eigenvectors of S(2)

1 −1
2
0
1
0

2− α




2
0
0
1

2 + α




1
1
0
0
0




−1
1
1
0

2 + α




−1
1
0
1

2− α


Table 6: Eigenvalues and eigenvectors of S2,α

Here the first identity in eq. (B.2) is used to get the desired result
[
−̃1

4

]
. Replacements of this

kind are still quite comprehensible. But there are several results for other fusion products like

(B.3)
[
0̃
]
⊗f [1] = 4 [0]−

[
0̃
]
+ 2

[
−1

3

]
+ 4 [1] ,

which catch one’s eye because of a disturbing minus sign. But it also contains the latter of the
linear combinations in eq. (B.2) in a sufficiently high multiplicity, so that we can mend this
problem by a calculation on the level of characters. Equation (B.3) then yields

2
[
0̃
]
−
[
0̃
]
+ 2

[
−1

3

]
=
[
0̃
]
+ 2

[
−1

3

]
.

This kind of calculation must be done in several fusion products given in table 3. For those
products one finally gets the fusion rules for W-algebra representations, which are listed in table
4 and are consistent with the fusion rules calculated for the Virasoro modules in [GK96a].

Appendix C. Findings for the case p = 2: S2, C2(α) and K2

Here we look at the simplest case, p = 2, and search the matrix C2(α), for which we will have

(C.1) S2 = C2(α)S2,αC2
−1(α) ,

where the matrix S(2) (eq. (3.21)) appears as a block in S2. The fifth line of S2 is yet undetermined
as well. We write

(C.2) S2 =

 S(2)

0
0
0
0

s1 s2 s2 s4 s5


with s5 6= 0. Notice that S2 – even if known completely – leaves several possible C2(α) fulfilling
equation (C.1) and a couple of conditions we want to impose on C2(α) such as block diagonality.
Just looking at p = 2 these matrices will seem equally suitable. We will only be able to single out
a specific C2(α), when we ask, for which we can find a generalisation to arbitrary p.
A glance on the eigenvalues of the matrices S2 and S2,α, will give first restrictions on the matrix
S2. The eigenvalues and eigenvectors of the different S-matrices for p = 2 are listed in tables
5-8.
S2 and S2,α are both diagonalisable. The former one has a three dimensional eigenspaces for the
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1 −1 s5
2s2−s3
s1+s2

−2s1+s3
s1+s2

1
0
0




2s2−s4
s1+s2

−2s1+s3
s1+s2

0
1
0




1−s5
s1+s2
1−s5
s1+s2

0
0
1




−2
2
1
1

−2s2−s3−s4+2s1
s5+1




0
0
0
0
1


Table 7: Eigenvalues and eigenvectors of S2 for s5 6= −1

1 −1
1
1
0
0

s4
4 + s3

4 + s2




2
0
1
0

s4
2 + s3 + s2




2
0
0
1

s4 + s3
2 + s2



−2
2
1
1
0




0
0
0
0
1


Table 8: Eigenvalues and eigenvectors of S2 for s5 = −1 and s1 = 2s2+s3+s4

2

eigenvalue 1 and two one dimensional eigenspace for the eigenvalue −1 and for the eigenvalue s5,
respectively. For the latter one it is not so different. It has eigenvalues 1 and −1 belonging to
eigenspaces with dimensions three and two, respectively.
If now S2 is chosen, so that the fifth eigenvalue – and matrix element – s5 is also −1, the matrices
S2 and S2,α are diagonalised to the same matrix

(C.3) DS =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1

 .

But this is only the case, if we also have s1 = s2+s3/2+s4/2. Otherwise we get an undiagonalisable
matrix. This is also apparent from fifth component of the forth eigenvector of S2 for s5 6= −1
listed in table 7, which is not defined then.
With this condition and s5 = −1 the eigenvectors have the same first four components as the
eigenvectors of the smaller matrix S(2) (compare tables 5 and 8).
To continue to determine S2 we recall the block diagonal form of Mp,I in equation (3.14) and that
we have taken Kp to be block diagonal in our argumentation in section 3.2, where we fixed Kp at
the end taking the simplest choice. So S2 should already block diagonalise the fusion rules. For
this we take the results in table 1, which have been calculated following section 2. Here we only
need the first matrix of fusion coefficients giving the fusion rules for product with [−1/8]:

(C.4) N2,1 =


0 0 2 2 0
0 0 2 2 0
1 0 0 0 0
0 1 0 0 0
2 2 0 0 0


We impose the following condition:

(C.5) S2N2,1S2 =


• 0 0 0 0
0 • 0 0 0
0
0
0

0
0
0

 ,
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which leads to two restrictions for S2:

(S2N2,1S2)51 = −2 + 2s2 + s3 + s4 = 0

(S2N2,1S2)52 = −2− 2s2 = 0

}
⇒
{

s3 = 4− s4

s2 = −1
.

The matrix element s4 is left undetermined by this argument, because with these two conditions
also all other matrices N2,I take the form as in eq. (C.5), when they are multiplied by S2 from
both sides. At this point our S-matrix looks like

(C.6)


1
2

1
2 1 1 0

1
2

1
2 −1 −1 0

1
4 −1

4
1
2 −1

2 0
1
4 −1

4 −1
2

1
2 0

1 −1 4− s4 s4 −1

 .

The first two columns of the matrices S2 and Sp,α are the same. The first two rows were anyway
the same from the beginning. This very much militates in favour of a block diagonal C2(α) apart
from the good reasons there are anyway because its smaller brother Cirr,2 (eq. (3.27)) is also
block diagonal.
We now take the matrix K2 from equation (3.24) and our choice of the two matrix elements
k(1)

1 = k(1)
2 = 0:

(C.7) K2 =


4 0 0 0 0
0 −4 0 0 0
0 0 1 1

2 0
0 0 −1 1

2 0
0 0 0 0 1

 ,

In [Knu06] we also shortly discuss the influence of this choice on s4.
Together with the S-matrix in equation (C.6) we go through the calculations, which are needed
to get to the coefficient matrices and look for a condition on s4. The equations (3.23), (3.14)
and (3.10) lead us via the matrices P2 and M2,I to the matrices N2,I . Here we are left with the
argument that the result should agree to the result of MF, which in turn after some replacements
agree with the result of M. Gaberdiel and H. Kausch.
We compare the following results for N2,1 from the calculations described:

0 0 2 2 0
0 0 2 2 0
1 0 0 0 0
0 1 0 0 0

4− s4 s4 0 0 0

 =


0 0 2 2 0
0 0 2 2 0
1 0 0 0 0
0 1 0 0 0
2 2 0 0 0

 .

It follows that s4 = 2, which gives also the other fusion coefficients correctly. This also gives some
more ”symmetry” to the S-matrix. The elements of the third and fourth column are now the
same modulo minus signs.
We have all matrices, which we need for the extended block diagonalisation method for p = 2.
Still we need to find the matrix C2(α), which both fulfils equation (C.1) and can be generalised
to arbitrary p.

C.1. Observations about Similar S-Matrices and the Matrix C2(ααα). We find a possible
matrix C2 fulfilling eq. (C.1) from the matrices, which diagonalise S2 and S2,α, to the same
diagonal matrix DS (see eq. (C.3)) . If these two diagonalising matrices are U1 and U2(α),
respectively, we have

(C.8) U−1
1 S2U1 = DS = U2(α)−1S2,αU2(α) .

This directly gives us a lot of possible matrices C2(α) by rearrangement of equation (C.1).

(C.9) C2(α) = U1U2
−1(α) ,

As the eigenspaces, we are looking at, are two or three dimensional, there are quite a lot of matri-
ces U1 and U2(α) that meet our needs. Every possible basis of eigenvectors spanning a particular
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eigenspace may be taken as the columns of these matrices. In other words the columns may
be any linear combination of the eigenvectors in one eigenspace listed in tables 6 and 8 for the
matrices S2,α and S2 (with the matrix elements inserted, which we have found now), as long as
they are linearly independent.
First we just state the one possible C2(α) here, which computes plainly using the listed eigenvec-
tors as columns of U1 and U2(α) and get:

(C.10) C2,1(α) =


9
8

7
8 −3

2 + 1
2α

1
2α − 1

4α

−1
8

1
8

3
2 −

1
2α − 1

2α
1
4α

0 0 1
2 −

1
α

1
2 −

1
α

1
2α

1
8

7
8 − 1

2α −1
2 −

1
2α

1
4α

5
8

11
8 −1 + 1

2α
1
2 −

1
2α

1
4α

 .

This does not fit our expectations. This matrix does not have the block structure, which our
thoughts about the triples of irreducible and indecomposable representations would suggest. We
also recall that we would like to have a matrix with the first four rows equal to the matrix C ′2(α)
from equation (3.29).
But how much choice do we actually have for C2(α)? Or even better, what is the most general
C2(α), which we get from equation (C.9), and are there others – not in the form of eq. (C.9) –,
that fulfil equation (C.1)? The answers are given by the following linear algebraic statement and
during its proof.

Lemma: Let S, S̃ ∈ Mn×n(C) be two diagonalisable matrices, which are diagonalised to the
same matrix. Then they are similar to each other and all matrices C ∈ Mn×n(C) fulfilling the
equation

(C.11) CSC−1 = S̃ ,

are given by the product of a particular C = C1 times a matrix A ∈ Mn×n(C), which commutes
with S or S̃. Conversely any such product fulfils equation (C.11).

Remark: Equation (C.11) can also be defined with the matrices S and S̃ interchanged. But this
does not make a difference, when we go over from C = C1A to C−1 = A−1C1

−1. Note that the
inverse of A commutes with the same matrices as A itself.
It is not needed here, but it is one line to see that any two matrices S and S̃, which are conjugate
through a matrix C are diagonalised to the same diagonal matrix. If S is diagonalised by P ,

PDP−1 = S = CS̃C−1 .

S̃ is diagonalised by C−1P to the same diagonal matrix D.

Proof: We have already shown the existence, because a particular solution for C can be retrieved
via the eigenvectors of S and S̃ from equation (C.9), as described above.
Let C and C ′ be two matrices, which conjugate S and S̃ as in equation (C.11), so that we have

C S = S̃ C ,(C.12)

C ′ S = S̃ C ′ .(C.13)

A is defined by A = C−1C ′ and C ′ = CA is plugged into the last equation:

C A S = S̃ C A .

Now use equation (C.12) on the right hand side to get

C A S = C S A .

Multiplying the inverse of C shows that A commutes with S. A commutes also with S̃ because
its inverse does. This is directly seen, when one goes through the analogous steps starting with
C = C ′A−1 plugged into (C.12) and uses eq. (C.13).
For the backwards direction we need only to multiply equation (C.12) by an arbitrary matrix A,
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which commutes with S, from the right side. We can interchange those two matrices on the left
hand side and find that CA conjugates S with S̃.

We now need to find all matrices, which commute with S2,α. We continue to call them A and
multiply the commutation relation of those two matrices by the matrix U2(α) and its inverse from
opposite sides. We get

U2
−1(α) A U2(α) U2

−1(α) S2,α U2(α) = U2
−1(α)S2,α U2(α) U2

−1(α) A U2(α) .

We simplify this with the help of equation (C.8).

(C.14) U2
−1(α) A U2(α) DS = DS U2

−1(α) A U2(α) .

Hence we see that A′ := U2
−1(α) A U2(α) has to commute with the diagonal matrix DS (eq.

(C.3)). All matrices A′ having this property are given by

A′ =


(A′)11 (A′)12 (A′)13 0 0
(A′)21 (A′)22 (A′)23 0 0
(A′)31 (A′)32 (A′)33 0 0

0 0 0 (A′)44 (A′)45
0 0 0 (A′)54 (A′)55


with arbitrary (A′)ij for 1 ≤ i, j ≤ 3 or 4 ≤ i, j ≤ 5, so that the matrix has full rank.
Now we take this together with the definition of A′ beneath equation (C.14) and the lemma to
get via A all possible C2,gen(α) (eq. (C.9)) from the one particular C2,1(α) (eq. (C.10)):

C2,gen(α) = C2,1(α) A = C2,1(α) U2(α) A′ U2
−1(α) .

Of course, with so many unknowns the matrix C2,gen(α) gets very lengthy. Now we simply require
that the first four rows of this matrix are equal to the matrix C ′2(α) from equation (3.29). We
recall that this was justified by the correspondence of τ -dependent and α-dependent matrices
described in section 3.2.2. We want to get an extension of Fuchs’ approach, which goes over
to the latter one, when one projects to the irreducible representations. In this case the matrix
C2(α) should project to C ′2(α), which corresponds to Cirr,2(τ), because the projection of S2,α

corresponds to S(2).
The fifth row then is the transpose of the following vector.

(C.15)


1
2 −

1
8(A′)54 − 1

8(A′)55
−1

2 + 1
8(A′)54 + 1

8(A′)55
1 +

(
1
2 −

1
2α

)
(A′)54 + 1

2α(A′)55
1− 1

2α(A′)54 +
(

1
2 + 1

2α

)
(A′)55

1
4α(A′)54 − 1

4α(A′)55

 .

In analogy to Cirr,p this matrix should be block diagonal. This gives twice the same condition,
which solves to

(A′)54 = 4− (A′)55 .

C.2. Generalisation to Arbitrary Values of p. The last unknown, (A′)55, has been pre-
liminary set to three because of more aesthetic reasons. This way the matrix C2(α) simplifies
to

C2(α) =


1 0
0 1 0

0

3α+2
4α

α+2
4α − 1

4α
α−2
4α

3α−2
4α

1
4α

3α+2
2α

5α+2
2α − 1

2α

 .

It seems natural to have (C2)55 = −1/(2α). Firstly, it fits to the grouping of terms, we have
seen in section 3.2.2. The factors of the 1/α-terms in the last row are twice as large than in the
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first and second row. This is expected because of the double multiplicities in the indecomposable
representation. Also the inverse of this matrix is quite simple

(C.16) C−1
2 (α) =


1 0
0 1 0

0
2 1 −1

2
−1 0 1

2
α + 2 3α + 2 −α

 .

This is very much in our favour, because we can now guess the inverse of C3(α) with not much
effort. The last row in every block is fixed looking at the result for C3(α), which it would lead to.
We require once more that the first two rows of both blocks are the blocks of the matrix C ′3(α).
We get

(C.17) C−1
3 (α) =



1 0
0 1 0 0

0
2 1 −1

2
−1 0 1

2
α + 2 4α + 2 −3

2α

0

0 0
2 1 −1

2
−1 0 1

2
2α + 2 5α + 2 −3

2α


.

Its inverse is

C3(α) =



1 0
0 1 0 0

0

2
3 + 1

3α
1
6 + 1

3α − 1
6α

1
3 −

1
3α

5
6 −

1
3α

1
6α

4
3 + 2

3α
7
3 + 2

3α − 1
3α

0

0 0

5
6 + 1

3α
1
3 + 1

3α − 1
6α

1
6 −

1
3α

2
3 −

1
3α

1
6α

5
3 + 2

3α
8
3 + 2

3α − 1
3α


.

This result, C3(α), also determines the matrix S3. This matrix S3 gives the correct fusion rules
through our extended block diagonalisation method.
Another choice of (A′)55, which we considered, is (A′)55 = 1. This gives a very similar inverse
of C2(α) and we can also guess the inverse of a potential C3(α), but this though similar has not
the required same elements as C ′3(α). Actually the rows of C ′3(α) are interchanged and in these
rows the first two columns are exchanged in each block, while in the additional rows there are
also differences of one or the other minus sign. Remarkably, this version gives a S-matrix and
fusion rules, which are qualitatively correct. Only the multiplicities are wrong and turn out to be
fractional.
With C2(α) and C3(α) we can guess the general matrix Cp(α), which is given in equation (3.30).

References

[Abe05] Toshiyuki Abe. A Z 2-orbifold model of the symplectic fermionic vertex operator superalgebra, 2005,
math/0503472.

[AM07] Drazen Adamovic and Antun Milas. Logarithmic intertwining operators and W(2,2p-1)-algebras, 2007,
math/0702081.

[BPZ84] A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. Infinite conformal symmetry in two-dimensional
quantum field theory. Nucl. Phys. B, 241:333–380, 1984.

[CF06] Nils Carqueville and Michael Flohr. Nonmeromorphic operator product expansion and C2-cofiniteness
for a family of W-algebras. J. Phys., A39:951–966, 2006, math-ph/0508015.

[EF06] Holger Eberle and Michael Flohr. Virasoro representations and fusion for general augmented minimal
models. J. Phys., A39:15245–15286, 2006, hep-th/0604097.

[Fal94] G. Faltings. A proof of the verlinde formula. Journ. of Algebraic Geometry, 3:347–374, 1994.
[FG06] Michael Flohr and Matthias R. Gaberdiel. Logarithmic torus amplitudes. J. Phys., A39:1955–1968,

2006, hep-th/0509075.



36 Michael Flohr and Holger Knuth

[FGK07] Michael Flohr, Carsten Grabow, and Michael Koehn. Fermionic expressions for the characters of c(p,1)
logarithmic conformal field theories. Nucl. Phys., B768:263–276, 2007, hep-th/0611241.

[FGST06a] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin. Kazhdan–lusztig correspon-
dence for the representation category of the triplet w-algebra in logarithmic conformal field theory.
Theor. Math. Phys., 148:1210–1235, 2006, math.qa/0512621.

[FGST06b] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin. Modular group representations
and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math.
Phys., 265:47–93, 2006, hep-th/0504093.

[FHST04] J. Fuchs, S. Hwang, A. M. Semikhatov, and I. Yu. Tipunin. Nonsemisimple fusion algebras and the
verlinde formula. Commun. Math. Phys., 247:713–742, 2004, hep-th/0306274.

[Flo96] Michael Flohr. On modular invariant partition functions of conformal field theories with logarithmic
operators. Int. J. Mod. Phys., A11:4147–4172, 1996, hep-th/9509166.

[Flo97] Michael A. I. Flohr. On fusion rules in logarithmic conformal field theories. Int. J. Mod. Phys.,
A12:1943–1958, 1997, hep-th/9605151.

[Flo03] Michael Flohr. Bits and pieces in logarithmic conformal field theory. Int. J. Mod. Phys., A18:4497–4592,
2003, hep-th/0111228.

[Fuc06] Jurgen Fuchs. On non-semisimple fusion rules and tensor categories, 2006, hep-th/0602051.
[Gab94a] Matthias Gaberdiel. Fusion in conformal field theory as the tensor product of the symmetry algebra.

Int. J. Mod. Phys., A9:4619–4636, 1994, hep-th/9307183.
[Gab94b] Matthias Gaberdiel. Fusion rules of chiral algebras. Nucl. Phys., B417:130–150, 1994, hep-th/9309105.
[Gab00] Matthias R. Gaberdiel. An introduction to conformal field theory. Rept. Prog. Phys., 63:607–667, 2000,

hep-th/9910156.
[Gab03] Matthias R Gaberdiel. An algebraic approach to logarithmic conformal field theory. Int. J. Mod. Phys.,

A18:4593–4638, 2003, hep-th/0111260.
[GK96a] Matthias R. Gaberdiel and Horst G. Kausch. Indecomposable fusion products. Nucl. Phys., B477:293–

318, 1996, hep-th/9604026.
[GK96b] Matthias R. Gaberdiel and Horst G. Kausch. A rational logarithmic conformal field theory. Phys. Lett.,

B386:131–137, 1996, hep-th/9606050.
[Gur93] V. Gurarie. Logarithmic operators in conformal field theory. Nucl. Phys., B410:535–549, 1993, hep-

th/9303160.
[Hua04] Yi-Zhi Huang. Vertex operator algebras and the verlinde conjecture, 2004, math/0406291.
[Hua05a] Yi-Zhi Huang. Differential equations, duality and modular invariance. Commun. Contemp. Math.,

7:649–706, 2005, math/0303049.
[Hua05b] Yi-Zhi Huang. Vertex operator algebras, the verlinde conjecture and modular tensor categories. Pro-

ceedings of the National Academy of Sciences, 102:5352, 2005, math/0412261.
[Kau91] H. G. Kausch. Extended conformal algebras generated by a multiplet of primary fields. Physics Letters

B, 259(4):448–455, 1991.
[Kau95] Horst G. Kausch. Curiosities at c=-2, 1995, hep-th/9510149.
[Kau00] Horst G. Kausch. Symplectic fermions. Nucl. Phys., B583:513–541, 2000, hep-th/0003029.
[Knu06] Holger Knuth. Fusion algebras and verlinde-formula in logarithmic conformal field theories, 2006,

http://www.itp.uni-hannover.de/∼knuth/DAKnuth.pdf.
[MS89] Gregory W. Moore and Nathan Seiberg. Classical and quantum conformal field theory. Commun. Math.

Phys., 123:177, 1989.
[PR07] Paul A. Pearce and Jorgen Rasmussen. Solvable critical dense polymers. J. Stat. Mech., 0702:P015,

2007, hep-th/0610273.
[PRZ06] Paul A. Pearce, Jorgen Rasmussen, and Jean-Bernard Zuber. Logarithmic minimal models. J. Stat.

Mech., 0611:P017, 2006, hep-th/0607232.
[Sal92] H. Saleur. Polymers and percolation in two-dimensions and twisted N=2 supersymmetry. Nucl. Phys.,

B382:486–531, 1992, hep-th/9111007.
[Ver88] Erik P. Verlinde. Fusion rules and modular transformations in 2-d conformal field theory. Nucl. Phys.,

B300:360, 1988.

Institut für Theoretische Physik, Leibniz Universität Hannover
Appelstrasse 2, D-30167 Hannover, Germany
E-mail address: knuth / flohr @itp.uni-hannover.de

URL: http://www.itp.uni-hannover.de /∼knuth resp. /∼flohr


