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On a Conformal Field Theory Approach to
Seiberg-Witten Models

The use of conformal field theory tools in string theory is, of course, not new. However, with
the advent of logarithmic conformal field theory (LCFT, see [1] and referecnes therein) we
may have a better machinery to describe physics whose underlying structure is determined by
the geometry of Riemannian manifolds, in particular Riemannian surfaces. This is especially
the case in modern string theory with its new family members such as branes, M -theory and
the resulting exactly solvable low-energy effective field theories.

I. Seiberg-Witten models:
BPS states are given in terms of periods

a[γ] =
∮

γ
dSΣ

over a meromorphic one-form dSΣ associated to a Riemann surface Σ with induced metric
ds2 = |dSΣ|2. In all relevant cases,

dSΣ =
∏
i

(z − xi)
−qidz

with
∑

i qi = 0 and 2qi ∈ Z in case Σ is hyperelliptic. The precise form of Σ and dSΣ can be
derived in many ways from higher-dimensional physics, e.g. from wrapped 3-branes in type
II string compactifications on fibred Calabi-Yau 3-folds (see Klemm et al., hep-th/9604034).
The resulting effective string theory of self-dual strings has a 3-dimensional target space M
with ∂M = Σ its euclidean boundary. The BPS states of the low-energy effective SYM
theory are created by such strings ending on Σ. Since they are localized with respect to
the critical points of the metric ds2, they have non-trivial tension yielding the masses of
the BPS states. The reduction of this effective 3-dimensional target space theory down to
2 dimensions should yield a euclidean CFT due to reparametrization invariance on ∂M . In
fact,

a[γ] = 〈〈Q−[γ]
∏
i

Vqi
(xi)〉〉

yields a 1-to-1 correpondence of periods and conformal blocks with one screening charge of
the rational LCFT with c = −2, which is the spin zero-one matter or ghost system. Here,
Q−[γ] =

∮
γ dzV−1(z).

II. CFT Approach:
In the spin zero-one matter system the self-dual strings ending on Σ are represented by the
spin one field φ(1) (1-differential) localized on a curve γ. The action of this CFT is simply

Sc=−2 =
∫

φ(1)∂̄φ(0)d2z .
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However, correlation functions evaluated on Riemannian surfaces vanish unless all zero modes
are cancelled. Introduce, after bosonization with scalars ϕ, vertex operators Vq = exp(iqϕ)
and puncture operators Λq = ϕVq. For example, φ(1) = V−1. The zeroes of dSΣ take care of
most of the zero modes, for the remaining ones one introduces the generating functional

Z[{ρ±n}] =

〈Σ1, d̄S1|Λ−1(∞) exp(−
∫

ρ0[D]V−1(z)d2z −
∑
n

∫ ρn[D]

n
Vn(∞)V−1(z)V−n(0)d2z + . . .)|Σ2, dS2〉 .

Here, ρ[D] is localized at the divisor D, and includes the appropriate cocyle to ensure charge
balance. Clearly, with Σ1 = P1 with a sinmple pole at infinity, and Σ2 = Σ, we have

a[γ] =
δ

δρ0[γ]
log(Z) = 〈〈P1|Λ2(∞)Q−[γ]|Σ, dSΣ〉〉 .

These correlation functions can be determined explicitly. Assuming x1 = ∞, x2 = 0, x3 = 1
to lighten the notation (otherwise the expressions are ornamented by appropriated transfor-
mation factors), we find for the period γ(x2, x3) encircling x2 and x3 the result

a[γ(0, 1)] =
Γ(1− q2)Γ(1− q3)

Γ(2− q2 − q3)
F

(n−3)
D (1− q2; q4, . . . , qn; 2− q2 − q3|1/x4, . . . , 1/xn)

n∏
i=4

x−qi
i .

The functions F
(n)
D are so-called Lauricella functions and generalize hypergeometric functions

to multiple variables. One has

F
(n)
D (a; b1, . . . , bn; c|z1, . . . , zn) =

∞∑
m1,...,mn=0

(a)m1+...+mn

(c)m1+...+mn

n∏
i=1

(bi)mi

mi!
zmi

i

whenever all |zi| < 1. Analytic continuation of these functions can easily be infered from
the well-known analytic continuation of ordinary hypergeometric functions making use of
the symbolic differential operators

∇(h) =
Γ(h)n−1Γ(

∑
i δi + h)∏

i Γ(δi + h)
, ∆(h) = ∇(h)−1 ,

where δi = zi∂zi
. As a result,

F
(n)
D (a; b1, . . . , bn; c|z1, . . . , zn) = ∇(a)∆(c)

∏
i

2F1(a, bi; c; zi) .

III. BPS States:
With the above sketched approach, the prepotential of the Seiberg-Witten models can be
written suggestively as

F = 〈〈Σ, d̄S∗Σ|Σ, dSΣ〉〉

=
∑
γ,n

1

n
〈〈Σ, d̄S∗Σ|Λ2−n(∞)Q−[γ]Vn(0)|P1〉〉〈〈P1|Λ2−n(∞)Q−[γ]Vn(0)|Σ, dSΣ〉〉

=
∑
γ,n

1

n
〈〈P1; n|Q−[γ∗]|Σ, dΣ; 2 + n〉〉〈〈P1;−n|Q−[γ]|Σ, dΣ; 2− n〉〉 ,
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where we have absorbed the pole structure at z = ∞ and z = 0 in the vacuum states, and
where γ runs over the extended homology including cycles around the poles with γ∗ the
dual to γ with respect to the intersection form. Note that the CFT approach automatically
yields F including contributions from the (truncated) Whitham hierarchy. The reason is
that the CFT approach allows to introduce arbitrary boundary conditions for the fields on
Σ, in particular for the vacuum states. Also, the CFT approach puts models with (massive)
hypermultiplets on equal footing Stable BPS states are expected to correspond to geodesics
running between zeroes of dS. The zeroes correspond to branch points of the fibration of
the Calabi-Yau compactification space. The geodesics are derived from the 3-cyles in the
CY space by an essentially faithful map f : H3(CY ) → H1(Σ) such that the integral of
the holomorphic 3-form Ω over a 3-cylce C3 is equivalent to

∫
C3

Ω =
∫
f(C3) dS. As a result,

non-trivial states (i.e. 3-cycles) correspond to strings on Σ localized at critical points of dS.
The mass is given by the tension which obvioulsy also yields the geodesic condition. The
charges of the states are characterized by their homology class, since any geodesic must be
equivalent to Γ =

∑
i giγi with charges given as winding numbers gi. Necessary conditions

for the BPS state to be stable are

(i) gcd({gi}) = 1 ,

(ii) Γ ∩ Γ = 0 ,

i.e. the curve Γ is neither a multiple of another, nor does it self-intersect (and could thus be
splitted). The CFT approach makes it easy to evaluate the geodesics, since the conformal
blocks put poles and branch points in dS on equal footing with its zeroes. Moreover, a
remarkably feature of the Lauricella FD system is that its incomplete integral can be solved
explicitly, which amounts in nothing else than inserting an “identity” Λ0(z) as an infinitesimal
probe in the CFT correlator,∫ z

0
dS = 〈〈P1|Q−[γ(0, z)]Λ0(z)|Σ, dS; 2〉〉

=
Γ(1− q2)Γ(1− q3)

Γ(2− q2 − q3)

z1−q2

1− q2

F
(n−2)
D (1− q2; q3, q4, . . . , qn; 2− q2|z, 1/x4, . . . , 1/xn) .

Non-trivial geodesics result by the necessity to analytically continue the above formula for
|z| > 1, and by encircling other critical points. Note that all physically relevant geodesics
emmanate from a critical point of dS such that by an SL(2, C) transformation the base point
of the above incomplete integral can always be moved to z = 0 without loss of generality.

IV. Further Remarks:
The necessary shift of the charge balance can also be achieved by using Q+ which picks up
the residue terms within its integration contour. For example, the insertion of Λ2(∞) can
be replaced by considering a conformal block with two screening charges:

a[γ] = 〈〈P1|Q+[γ(∞)]Q−[γ]|Σ, dS〉〉 .

The stringy picture has a striking resemblance to some interesting condensed matter
physics. What is essentially computed above is the interaction of a string on Σ with a gas
of charges qi on Σ. The string enters in the CFT approach as a spin one field which gets
localized at some of the charges. This is precisely the same setting as in the quantum Hall
effect. In particular the so-called Haldane-Rezayi state (see last reference in of [2]) is a
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quantum state of paired electrons forming singlets (spin zero fields). The wave functions for
excitations of the Haldane-Rezayi state can be calculated by CFT methods, where again the
CFT is considered to be the boundary theory for some conjectured 3-dimensional Chern-
Simons theory. Depending on whether we are interested in the edge or bulk excitations, the
boundary theory becomes a minkowskian c = 1 CFT in the former case, and a euclidean
c = −2 CFT in the latter. The bulk excitations are entirely determined by the topological
nature of the disorder which in fact is described by insertions of operators Vqi

(xi) creating
a non-trivial topology of a Riemann surface from the plane and yielding such interesting
features as non-abelian statistics. It is worth noting that the operators V1/2, which create
branch cuts for Σ, correspond to flux quanta piercing the plane.

One may now ask what the advantage is of using the LCFT description instead of
more common and established mathematical tools to deal with computations on Riemannian
surfaces. Firstly, many computations are much simpler in the LCFT picture. For example, all
differential equations appearing in SU(Nc) Seiberg-Witten N=2 super-symmetric models are
only of second degree, even when Nf < 2Nc massive hyper-multiplets are present. This is to
be contrasted with the third order Picard-Fuchs equations one is otherwise confronted with.
Also, the evaluation of the Seiberg-Witten periods in asymptotic regions of moduli space
becomes just a simple and straight-forward task in applying operator product expansions.

Secondly, and more importantly, the LCFT picture might be much more physical. As
already indicated above, the intersections of (e.g. in the type II framework) D4-branes on
NS5-branes can be viewed in a very similar way as flux quanta piercing through a two-
dimensional quantum Hall droplet. In the low-energy picture, one is not interested in the
interaction among the intersecting branes, but only in their effect on an excitation (such as
a wrapped string), as one is not so much interested in the interaction among the flux quanta
than in their influence on a quasi-particle state.

In fact, the Seiberg-Witten differential can be rewritten as the exponential of a canon-
ical potential a gas of charged particles would exert on a probe, where the charges are given
by the precise nature of all singular fibres in the fibred Calabi-Yau compactification space.
Hence, Laughlin’s plasma-analogy supporting his quantum droplet hypothesis can be invoked
in this setting, too.
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