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Abstract

We study orbifolds of (0, 2) models and their relation to (0, 2) mirror symmetry. In the Landau-

Ginzburg phase of a (0, 2) model the superpotential features a whole bunch of discrete sym-

metries, which by quotient action lead to a variety of consistent (0, 2) vacua. We study a

few examples in very much detail. Furthermore, we comment on the application of (0, 2)

mirror symmetry to the calculation of Yukawa couplings in the space-time superpotential.
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1. Introduction

Despite gradual progress in revealing the existence and structure of phenomenologically

promising (0, 2) world-sheet supersymmetric compactifications of the heterotic string [1-18],

the knowledge we have is still far less compared to their more prominent left-right symmetric

subset of (2, 2) models. Since some special elliptically fibered (0, 2) models in both six and

four dimensions made their appearance in conjectured F-theory, heterotic string dualities [19],

to have a better understanding, in particular of their moduli spaces, clearly is desirable. In

the (2, 2) case, a combination of some non-renormalization theorems for certain couplings in

the superpotential [20],[21] and mirror symmetry served as powerful tools for formulating an

exact geometric description of the complex and Kähler moduli spaces [22].

In the (0, 2) case we are on much looser ground. On the one hand, the proof of exactness of

certain Yukawa couplings in the large radius limit heavily relied on the left-moving world sheet

N = 2 supersymmetry. Furthermore, for small radius there does not even exist an algebraic

distinction among the possible complex, Kähler and bundle moduli. On the other hand, (0, 2)

mirror symmetry is still in its infancy. Even though for a special subset of (0, 2) models strong

indications of mirror symmetry have been found in [23], we do not know whether this duality

extends to more general (0, 2) compactifications.

With this background in mind, in this letter we investigate further the implementation of

mirror symmetry in the (0, 2) context and its application to the calculations of certain 3-point

couplings. Recently, a description of orbifolds of (0, 2) models in their Landau-Ginzburg phase

has been presented [24]. In particular, a formula for the elliptic genus in the quotient model

has been derived. In contrast to the (2, 2) case, a priori the (0, 2) superpotential has an infinite

number of discrete symmetries subject to some anomaly constraints. After reviewing the

basics of the orbifold construction, we systematically study (0, 2) orbifolds of a (0, 2) orbifold

descendant of the (2, 2) quintic in very much detail. We find that even by modding out in each

case only one discrete symmetry one ends up with a large number of different models showing

(almost) mirror symmetry. As a by-product we find that the simple current construction given

in [12] is nothing else than a Z2 (0, 2) orbifold of a (2, 2) model. This gives a way of constructing

consistent (0, 2) models as orbifold descendants of (2, 2) models. In order to see whether (0, 2)

mirror symmetry is only an artifact for such descendants of (2, 2) models, we also study an

example which is not supposed to be of this type.

In the last section we draw the minimal conclusion from mirror symmetry, allowing us to derive

simple selection rules for some Yukawa couplings of the form 〈10, 16, 16〉 in the case of SO(10)

gauge group.

2. Review of (0, 2) Orbifolds

We consider (0, 2) models described by linear σ− models [4] which for small radius r ≪ 0

are equivalent to (0, 2) Landau-Ginzburg models 1. There is a number of chiral superfields:

1 The restriction to linear σ− models might exclude a lot of the elliptically fibered models naturally
arrising in recent F-theory/heterotic dualities. As shown in [11] the former models are generically not
subject to world-sheet instanton corrections of the space time superpotential, whereas such a feature

is expected from special divisors in F-theory [25]
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{Φi|i = 1, . . . , N} and a number of Fermi superfields: {Λa|a = 1, . . . ,M = Na +Nj} which are

governed by a superpotential of the form

W = ΛaFa(Φi) + ΛNa+jWj(Φi) , (2.1)

where Wj and F l
a are quasi-homogeneous polynomials. In the large radius limit the Wj define

hypersurfaces in a weighted projective space and the Fa define a vector bundle on this space.

For appropriate choices of the constraints Wj and Fa, the superpotential has an isolated sin-

gularity at the origin and is quasi-homogeneous of degree one, if one assigns charges ωi/m

to Φi, na/m to Λa, and 1 − dj/m to ΛNa+j . Quasi-homogeneity implies the existence of a

right-moving R-symmetry, and a left-moving U(1)L. The associated currents are denoted by

JR and JL, respectively. The charges of the various fields with respect to these U(1) currents

are summarized in the following table:

Field φi ψi λa λNa+j

qL
ωi

m
ωi

m
na

m
− 1 −

dj

m

qR
ωi

m
ωi

m
− 1 na

m
1 −

dj

m

Table 1: Left and right charges of the fields in the LG model.

Of course, the fermions, ψi, belong to the chiral superfield, Φi, while the fermions, λa are the

lowest components of the Fermi superfields Λa. Anomaly cancellation for these two global U(1)

symmetries is equivalent to the anomaly conditions expected from the large radius limit:

∑

ωi =
∑

dj ,
∑

na = m,
∑

d2
j −

∑

w2
i = m−

∑

n2
a .

(2.2)

For appropriate choices of the functions Wj and Fa, in general there exist a bunch of discrete

symmetries of the superpotential acting on the fields as

Φi → e2πiqiΦi,Λa → e−2πiqaΛa . (2.3)

This defines a ZZh action on the fields, where h is the minimal common denominator of the the

charges qi, qa. In general one has multiple quotient actions of order h0, . . . , hP−1, where the

first quotient should be the GSO projection ZZm. Then one can define the following quantities:

Rµν =
M
∑

a=1

qµ
a q

ν
a −

N
∑

i=1

qµ
i q

ν
i , rµ =

M
∑

a=1

qµ
a −

N
∑

i=1

qµ
i . (2.4)

As was shown in [24] the orbifold partition function can be written as a sum over all twisted

sectors as

Zorb(τ, ν) =
1

∏

hµ

h0−1
∑

α0,β0=0

. . .

hP−1−1
∑

αP−1,βP−1=0

ǫ(~α, ~β) ~β

~α

(τ, ν, 0) , (2.5)
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and is modular invariant only if the phase factor

ǫ(~α, ~β) = eπi~w(~α+~β) eπi~αQ~β (2.6)

satisfies
Qµν +Qνµ ∈ 2ZZ , wµ +Qµµ ∈ 2ZZ ,

(wµ − rµ)hµ = 0 mod 2 , (Qµν +Rµν)hν = 0 mod 2 ,
(2.7)

for any µ, ν ∈ {0, . . . , P − 1}. These conditions provide constraints on rµ and Rµµ:

rµhµ ∈

{

2ZZ for hµ even ,
ZZ for hµ odd ,

Rµµhµ ∈
{

2ZZ for hµ even ,
ZZ for hµ odd .

(2.8)

For the off-diagonal terms one obtains the condition

Rµν =
ZZ

hµ
+

ZZ

hν
. (2.9)

In order for the quotient theory to be used as the internal sector of a heterotic string theory,

there are some further conditions on the charges that have to be satisfied. The difference of

the left and right moving U(1) charges in every single twisted sector must be an integer:
∑

a

~qa −
∑

i

~qi ∈ ZZ
P . (2.10)

The gauginos form the untwisted sector must not be projected out

~w =

(

∑

a

~qa −
∑

i

~qi

)

mod 2 . (2.11)

Lastly, we want our canonical projection onto states with left-moving charge qL = 1
2r

0 mod ZZ.

This requirement leads to the condition,

(Qµ0 −Rµ0) ∈ 2ZZ . (2.12)

This determines Qµ0 in terms of Rµ0 mod 2.

The massless sector of the orbifold contributes only to the so-called χy genus defined as

χy = lim
q→0

(i)N−Mq
N−M

12 y
1

2
r0

Zorb(q, y) . (2.13)

We denote the contribution to χy from a twisted sector ~α by χ~α
y . The contribution from each

twisted sector is determined in terms of the function,

f ~α(~z) = (−1)~w~αe2πi~z ~Q~αqE~α

∏

a(−1)[~α~qa](1 − e2πi~z~qaq{~α~qa})(1 − e−2πi~z~qaq1−{~α~qa})
∏

i(−1)[~α~qi](1 − e2πi~z~qiq{~α~qi})(1 − e−2πi~z~qiq1−{~α~qi})
, (2.14)

where χ~α
y is given by expanding f ~α(~z) in powers of q, and retaining terms of the form

q0e−2πi~z(~σ+~n), where ~n ∈ ZZ
P and ~σ = 1

2 ~w + 1
2~α(Q−R). Finally, we set z1 = . . . = zP−1 = 0.

Furthermore, we have used the abbreviation {x} = x− [x] in (2.14). The fractionalized charges

and energies in the twisted sectors are given by the formulae:

~Q~α =
∑

a

~qa(~α~qa − [~α~qa] −
1

2
) −

∑

i

~qi(~α~qi − [~α~qi] −
1

2
) ,

E~α =
1

2

∑

a

(~α~qa − [~α~qa] − 1)(~α~qa − [~α~qa]) −
1

2

∑

i

(~α~qi − [~α~qi] − 1)(~α~qi − [~α~qi]) .

(2.15)

This is a formula which can easily be put onto a computer, making more excessive calculations

feasible.
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3. Some special quotients

3.1. (0, 2) quotients of (2, 2) models

In this section we apply the orbifolding procedure to some special models, leading to

interesting aspects of (0, 2) models. First, we consider (2, 2) models which are given by a

hypersurface in a weighted projective space IPω1,...,ω5
[d]. Let us transform such a model to a

(0, 2) model with data

V (ω1, . . . , ω5; d) −→ IPω1,...,ω5
[d] . (3.1)

Note that in the Landau-Ginzburg phase the superpotential is

W =

5
∑

i=1

Λi

∂P

∂φi

+ Λ6 P . (3.2)

with P being a transversal polynomial of degree d. Calculating the massless spectrum of

such a model gives exactly the (2, 2) result with extra gauginos occurring in a twisted and

the untwisted sector extending the gauge group from SO(10) to E6. By decoupling the left

moving fermions λ from the bosons φ we are free to consider also general (0, 2) orbifolds. If

d/ω1 = 2l + 1 is odd we deform the superpotential (3.2) to

W = Λ1φ
2l
1 +

5
∑

i=2

Λi

∂P

∂φi

+ Λ6 φ
2l+1
1 (3.3)

and divide by the following ZZ2 action

J =

(

2l + 1

2
, 0, 0, 0, 0; 0, 0, 0, 0, 0,

2l − 3

2

)

(3.4)

which satisfies all anomaly conditions (2.8)(2.9). By calculating a few examples one finds that

this orbifold corresponds exactly to the implementation of the simple current

(~qi, ~qa) = (0 2l + 1 1)(0 0 0)4(1)(0) (3.5)

into the conformal field theory partition function introduced in [12]. Thus, following [14], the

move from a (2, 2) model IPω1,...,ω5
[d] to a (0, 2) model

V (ω1, . . . , ω5; d) −→ IP2ω1,lω1,ω2,...,ω5
[(l + 2)ω1, 2lω1] (3.6)

can be described as a (0, 2) orbifold of the (2, 2) model. Analogously, one expects that (2, 2)

models can produce different kinds of (0, 2) models via quotient actions. Thus, orbifolding

provides a nice way of constructing (0, 2) descendants out of (2, 2) models.

3.2. Classifying all (0, 2) orbifolds of the quintic

Exactly for the class of models reinterpreted as orbifolds in the last section, mirror sym-

metry has been investigated in [14]. If the (2, 2) model is of Fermat type, it has been shown

by Greene and Plesser [26] that orbifolding by the maximal discrete symmetry (preserving
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the left moving N = 2 symmetry) leads to the mirror model. Even more striking, successive

orbifolding leads to a completely mirror symmetric set of vacua. We want to see whether a

similar pattern also holds in the (0, 2) context. In [24] some orbifolds of the (0, 2) descendant

of the quintic

V (1, 1, 1, 1, 1; 5) −→ IP1,1,1,1,2,2[4, 4] (3.7)

have been constructed. Successive modding by a few generating ZZ5 orbifolds and introducing

non-trivial discrete torsion has lead to a mirror symmetric subset of all (0, 2) orbifold models.

In this section we want to be more ambitious and start a classification of all possible discrete

symmetries of the superpotential

W =

4
∑

i=1

λiφ
4
i + λ5φ

2
5 + λ6φ

2
6 + λ7φ5φ6 . (3.8)

As a first observation, the decoupling of fermionic and bosonic degrees of freedom in the

superpotential allows for an infinite set of solutions of the Diophantine equations encoding

the conditions for its invariance and the consistency of the model. In particular, for almost

any n we have a non-empty set of solutions with ZZn symmetry. However, the set of different

models with different spectra is finite, but much larger as in the case of (2, 2) models. Due to

the torsion Qµ,0 determined by the condition (2.12), one can restrict the search for solutions

with ZZn symmetry to integers modulo n such that for each n there are only finitely many

possibilities to check.

As a second observation, we note that e.g. all the orbifold models of the (0, 2) descendant of

the quintic constructed by successive modding by certain ZZ5 symmetries can also be found by

modding just once with a higher symmetry, for example ZZ15 or ZZ25. Led by the theory of

induced representations for poly-cyclic groups, we conjecture that all (0, 2) orbifolds to a given

basis model can be obtained by modding out just one (suitable high) symmetry ZZn.

For the (0, 2) descendant of the quintic we found all possible orbifold solutions with one ZZn

symmetry modded out, 2 ≤ n ≤ 37. This yields 107850 models, but only 180 different SO(10)

spectra and 91 different E6 spectra as well as two SO(12) orbifold models with N32 = N32 = 6

or 4. There are non-trivial solutions for all these n except n = 2, 4. The set of different orbifold

models obtained so far is certainly not yet complete, but it is almost. Assuming the correctness

of our conjecture above, and keeping in mind that the naive symmetry of the quintic is ZZ5, we

conjecture that ZZn orbifolds with an upper limit n = 125 = 53 would exhaust the complete

set of orbifold models – which, however, is outside our computation abilities.

The main observation now is that already our yet incomplete set does enjoy mirror symmetry

to a surprisingly high extent, if SO(10) models are considered. The situation for E6 models

is much less clear, which mainly is due to the limited ability to read off gauginos in untwisted

sectors using the method introduced in [23]. Figures 1 and 2 present our results.

3.3. Mirror symmetry for general (0, 2) models

Mirror symmetry might be something to be expected for (0, 2) descendants of (2, 2) models.

Therefore, it is natural to look for orbifolds of a general (0, 2) model which is not a (2, 2)
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Figure 1: The almost complete set of orbifolds for the (0, 2) descendant of the quintic.
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Figure 2: Orbifold models of the (0, 2) quintic split into SO(10) and E6 gauge groups.

descendant. As an example for this, let us take the (N16, N16) = (75, 1) model

V (1, 1, 1, 1, 4; 8) −→ IP1,1,2,2,3,3[6, 6] (3.9)

with the following choice for the superpotential:

W = λ1φ
7
1 + λ2φ

7
2 + λ3φ

2
3φ5 + λ4φ

2
4φ6 + λ5(φ

2
3 + φ2

4) + λ6(φ
3
3 + φ2

5) + λ7(φ
3
4 + φ2

6) . (3.10)
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We did a similar search for this model with symmetry groups ZZn, 2 ≤ n ≤ 48. There are

some notable differences between this model and the quintic: The superpotential is much more

complicated and has much less inner symmetry. Therefore, there are much less solutions of ZZn

charges such that W remains invariant and all other consistency requirements are met. For ex-

ample, there are no non-trivial solutions for n = 9, 13, 17, 18, 19, 23, 25, 29, 31, 34, 35, 36, 43, 45,

and the total number of possible solutions in our range is only 5966 + 6208 = 12174 orbifolds,

where the 6208 models all have ZZ48 symmetry. In total we only get 207 different spectra,

which in the plot are not differentiated according to their gauge group.

The plot (Figure 3) shows much less mirror symmetry than the plot for the (0, 2) quintic, but

still a certain amount of it. Keeping in mind that solutions are harder to find for this example,

and that the naive overall symmetry of W is ZZ24, we might expect a complete set of solutions

only within a huge range ZZn, n ≤ 24k, with an unknown power k ≥ 2. In the case of the

quintic our computation abilities were good enough to get all orbifolds which could also have

been obtained by modding out twice with basic ZZ5 symmetries. In this example, however, we

are far from such a degree of completeness. Hence, we might take the appearance of a glance of

symmetry in the plot as a hint that mirror symmetry might be true for general (0, 2) models.

This would mean that mirror symmetry is a structure not just inherited from (2, 2) models,

but much deeper and general.
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orbifolds V_{1,1,1,1,4}[8] -> IP_{1,1,2,2,3,3}[6,6] / Z_n,  2 <= n <= 48

Figure 3: Orbifolds for an example of a (0, 2) model which is not a (2, 2) descendant.

4. Yukawa couplings

Using left moving N = 2 supersymmetry, it can be shown that the Yukawa coupling

〈27, 27, 27〉 is independent of the Kähler modulus [20][21] and in particular does not receive
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world sheet instanton corrections. By choosing a (2, 2) model as the internal sector of a type II

compactification one recognizes this independence to be equivalent to the fact that for N = 2

four dimensional theories the hyper and vector multiplets decouple. However, in the general

(0, 2) case, there is no left moving supersymmetry and one can not in quite generality expect a

similar property to hold. Since in the (2, 2) case the chiral multiplets in the 27 representation

of E6 are related to the complex moduli by left supersymmetry, the complex moduli space can

also be calculated at σ-model tree level. Thus, one gets a complete picture of the complex

and Kähler moduli space by looking at the complex moduli space of the original model and its

mirror. Thus, (2, 2) mirror symmetry is not only an abstract duality but also has far reaching

computational consequences.

The question we are facing in this section is, whether similar applications of mirror symmetry

hold in the (0, 2) case. Due to lack of left supersymmetry the chain of arguments above fails

at every single step. So we have to be more modest. We consider models with gauge group

SO(10) having a well behaving Landau Ginzburg phase for r ≪ 0. Then, we know that at

the Landau Ginzburg point we can define a chiral ring structure for the Yukawa couplings

〈10, 16, 16〉ut in the untwisted sector [14]. This means that the chiral multiplets both in the

spinor and in the vector representation of SO(10) are given by polynomials in the zero modes

φi
0. Clearly, the coupling depends on the (unknown) normalizations of the vertex operators

and the complex and bundle moduli, but nevertheless the chiral ring implies strong selection

rules for such couplings to be non-zero. Taking into account that mirror symmetry exchanges

generations and anti-generations and that all anti-generations occur only in twisted sectors,

one expects that at least some 〈10, 16, 16〉tw Yukawas do also have a chiral ring structure. The

selection rules then follow from the 〈10, 16, 16〉ut couplings of the mirror model. A very simple

example is the model given in the Calabi-Yau phase by the bundle

0 → V →

5
⊕

a=1

O(1) → O(5) → 0 , (4.1)

over the threefold configuration IP(1,1,1,1,2,2)[4, 4]. In the Landau-Ginzburg phase, the massless

sector contains N16 = 80 untwisted chiral multiplets which transform in the spinor represen-

tation of SO(10). These are given by polynomials in the φi of degree five modulo the seven

constraints of weight four. There are no states transforming in the conjugate spinor repre-

sentation, and there are N10 = 72ut untwisted and N10 = 2tw twisted chiral multiplets which

transform in the vector representation. The untwisted ones are given by polynomials of degree

ten modulo the constraints. The mirror of this model can be written as the Landau-Ginzburg

phase of

V (51, 64, 60, 80, 65; 360) −→ IP51,60,80,65,128,128[256, 256] (4.2)

with N16 = 0 and N10 = 2ut and N10 = 72tw from the untwisted and twisted sector, respec-

tively. Mirror symmetry then implies that the Yukawas 〈10, 16, 16〉tw of the mirror model (4.2)

satisfy selection rules given by the polynomial ring of the original model

R =
C(φi)

Wj = Fa = 0
. (4.3)
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Since this example is not of a fairly general type and involves plenty of massless fields we will

consider a different example in more detail, namely

V (1, 1, 3, 5, 5; 15) −→ IP1,1,6,6,5,5[12, 12] . (4.4)

The massless spectrum consists of (N16, N16) = (80ut, 8tw) generations and anti-generations

and N10 = 75ut + 7tw vectors. We choose the superpotential to be

W = λ1φ
14
1 + λ2φ

14
2 + λ3φ3φ4 + λ4φ

2
5 + λ6φ

2
6 + λ6φ

2
3 + λ7φ

2
4 . (4.5)

The mirror is given by taking the ZZ15 quotient acting as

(~qi; ~qa) =

(

1

15
,−

1

15
, 0, 0, 0, 0;−

1

15
,

1

15
, 0, 0, 0, 0, 0

)

. (4.6)

with spectrum (N16, N16) = (6ut + 2tw, 80tw) and N10 = 5ut + 77tw. The untwisted sector of

the mirror contains information about the 〈10, 16, 16〉tw couplings of the original model. To

be more precise, the N16 = 6ut untwisted states are represented by polynomials A = φ5
1φ

5
2φ5,6

and B = φ2
1φ

2
2φ3,4φ5,6 of degree fifteen and the N10 = 5ut untwisted vectors are represented

by polynomials S = φ12
1 φ

12
2 φ3,4, T = φ10

1 φ
10
2 φ5φ6 and U = φ7

1φ
7
2φ3,4φ5φ6 of degree thirty. The

polynomial ring then tells us that couplings do only have a chance to be non-zero if they are

of type TAA or UAB with the indices chosen appropriately. In order to check this, one would

have to calculate the 〈10, 16, 16〉tw couplings in the original model exactly. Fortunately, for

this model a conformal field theory description is known: One starts with the (1, 1, 3, 13, 13)

Gepner model and introduces the simple current

J = (0 0 0)2(0 5 1)(0 0 0)2(1)(0) (4.7)

into the partition function. Following the discussion in [14] determining the massless states

and calculating the Yukawa couplings really shows that there are six anti-generations and five

twisted vectors obeying exactly the selection rules above. The exact calculation yields for the

couplings

TAA =
Γ
(

1
15

)

Γ2
(

3
5

)

Γ
(

11
15

)

Γ
(

4
15

)

Γ2
(

2
5

)

Γ
(

14
15

) , UAB =
Γ
(

1
15

)

Γ
(

8
15

)

Γ
(

3
5

)

Γ
(

4
5

)

Γ
(

1
5

)

Γ
(

2
5

)

Γ
(

7
15

)

Γ
(

14
15

) . (4.8)

This easy example shows that one can indeed learn one bit of information from (0, 2) mirror

symmetry. It remains to be seen whether for perhaps a subclass like all linear σ-models stronger

statements can be made. As was nicely shown in [11] there are unexpected cancellations in the

space-time superpotential so that at least all parameters in a linear σ-model are indeed good

moduli. Similar mechanisms are perhaps at work to cancel various corrections for the Yukawa

couplings.
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Summarizing, we have seen that (0, 2) orbifolding is a powerful method to get new (0, 2)

vacua of the heterotic string. Furthermore, we found strong indications that descendant (0, 2)

models of (2, 2) models feature (0, 2) mirror symmetry. Finally, we argued that (0, 2) mirror

symmetry can be used to extract information about couplings of type 〈10, 16, 16〉tw without

knowing the exact conformal field theory.
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