Publikationen

Ausgewählte Publikationen

The one way quantum computer (QCc)

The one way quantum computer (QCc), aka. measurement based quantum computation. I have invented the QCc jointly with Hans Briegel (US patent 7,277,872). It is a scheme of universal quantum computation by local measurements on a multi-particle entangled quantum state, the so-called cluster state. Quantum information is written into the cluster state, processed and read out by one-qubit measurements only. As the computation proceeds, the entanglement in the resource cluster state is progressively destroyed. Measurements replace unitary evolution as the elementary process driving a quantum computation.

A universal resource for the QCc is the cluster state, a highly entangled mult-qubit quantum state that can be easily generated unitarily by the Ising interaction on a square lattice. In the figure to the left, the qubits forming the cluster state are represented by dots and arrows. The symbol used indicates the basis of local measurement. Dots represent cluster qubits measured in the eigenbasis of the Pauli operator Z, arrows denote measurement in a basis in the equator of the Bloch sphere. The pattern of measurement bases can be regarded as representing a quantum circuit, i.e., the "vertical" direction on the cluster specifies the location of a logical qubit in a quantum register, and the "horizontal" direction on the cluster represents circuit time. However, this simple picture should be taken with a grain of salt: The optimal temporal order of measurements has very little to do with the temporal sequence of gates in the corresponding circuit.

Weitere Publikationen

Zeige Ergebnisse 41 - 60 von 89

2017


Wang DS, Stephen DT, Raussendorf R. Qudit quantum computation on matrix product states with global symmetry. Physical Review A. 2017 Mär 9;95(3):032312. doi: 10.48550/arXiv.1609.07174, 10.1103/PhysRevA.95.032312

2016


Raussendorf R, Sarvepalli P, Wei TC, Haghnegahdar P. Symmetry constraints on temporal order in measurement-based quantum computation. Information and computation. 2016 Okt 1;250:115-138. Epub 2016 Mär 2. doi: 10.48550/arXiv.1210.0620, 10.1016/j.ic.2016.02.010

2015


Delfosse N, Guerin PA, Bian J, Raussendorf R. Wigner Function Negativity and Contextuality in Quantum Computation on Rebits. Physical Review X. 2015 Apr 2;5(2):021003. doi: 10.1103/PhysRevX.5.021003
Loveridge L, Dridix R, Raussendorf R. Topos logic in measurement-based quantum computation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015 Apr 8;471(2176):20140716. doi: 10.48550/arXiv.1408.0745, 10.1098/rspa.2014.0716
Wei TC, Raussendorf R. The Spin-2 AKLT State on the Square Lattice is Universal for Measurement-based Quantum Computation. in Beigi S, Konig R, Hrsg., 10th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2015. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2015. S. 48-63. (Leibniz International Proceedings in Informatics, LIPIcs). doi: 10.4230/LIPIcs.TQC.2015.48
Wei TC, Raussendorf R. Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states. Physical Review A - Atomic, Molecular, and Optical Physics. 2015 Jul 9;92(1):012310. doi: 10.1103/PhysRevA.92.012310

2014


Hoban MJ, Wallman JJ, Anwar H, Usher N, Raussendorf R, Browne DE. Measurement-Based Classical Computation. Physical review letters. 2014 Apr 9;112(14):140505. doi: 10.48550/arXiv.1304.2667, 10.1103/PhysRevLett.112.140505
Lisonek P, Raußendorf R, Singh V. Generalized parity proofs of the Kochen-Specker theorem. 2014 Jan 13. Epub 2014 Jan 13. doi: 10.48550/arXiv.1401.3035
Monroe C, Raussendorf R, Ruthven A, Brown KR, Maunz P, Duan LM et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Physical Review A - Atomic, Molecular, and Optical Physics. 2014 Feb 13;89(2):022317. doi: 10.48550/arXiv.1208.0391, 10.1103/PhysRevA.89.022317
Wei TC, Haghnegahdar P, Raussendorf R. Hybrid valence-bond states for universal quantum computation. Physical Review A - Atomic, Molecular, and Optical Physics. 2014 Okt 28;90(4):042333. doi: 10.48550/arXiv.1310.5100, 10.1103/PhysRevA.90.042333

2013


Raussendorf R. Contextuality in measurement-based quantum computation. Physical Review A - Atomic, Molecular, and Optical Physics. 2013 Aug 19;88(2):022322. doi: 10.48550/arXiv.0907.5449, 10.1103/PhysRevA.88.022322

2012


Goff L, Raussendorf R. Classical simulation of measurement-based quantum computation on higher-genus surface-code states. Physical Review A - Atomic, Molecular, and Optical Physics. 2012 Okt 1;86(4):042301. doi: 10.48550/arXiv.1201.6319, 10.1103/PhysRevA.86.042301
Raussendorf R. Key ideas in quantum error correction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2012 Sep 28;370(1975):4541-4565. doi: 10.1098/rsta.2011.0494
Raussendorf R, Wei TC. Quantum Computation by Local Measurement. Annual Review of Condensed Matter Physics. 2012;3(1):239-261. Epub 2011 Dez 13. doi: 10.48550/arXiv.1208.0041, 10.1146/annurev-conmatphys-020911-125041
Sarvepalli P, Raussendorf R. Efficient decoding of topological color codes. Physical Review A - Atomic, Molecular, and Optical Physics. 2012 Feb 13;85(2):022317. doi: 10.48550/arXiv.1111.0831, 10.1103/PhysRevA.85.022317
Wei TC, Affleck I, Raussendorf R. Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation. Physical Review A - Atomic, Molecular, and Optical Physics. 2012 Sep 21;86(3):032328. doi: 10.48550/arXiv.1009.2840, 10.1103/PhysRevA.86.032328
Yao XC, Wang TX, Chen HZ, Gao WB, Fowler AG, Raussendorf R et al. Experimental demonstration of topological error correction. NATURE. 2012 Feb 23;482(7386):489-494. doi: 10.48550/arXiv.1202.5459, 10.1038/nature10770

2011


Li Y, Browne DE, Kwek LC, Raussendorf R, Wei TC. Thermal States as Universal Resources for Quantum Computation with Always-On Interactions. Physical review letters. 2011 Aug 1;107(6):060501. doi: 10.1103/PhysRevLett.107.060501, 10.48550/arXiv.1102.5153
Raußendorf R, Sarvepalli P, Wei TC, Haghnegahdar P. Measurement-based quantum computation: a quantum-mechanical toy model for spacetime? 2011 Aug 29. Epub 2011 Aug 29. doi: 10.48550/arXiv.1108.5774
Sarvepalli P, Raussendorf R. Local Equivalence of Surface Code States. in Dam W, Kendon VM, Severini S, Hrsg., Theory of Quantum Computation, Communication and Cryptography: 5th Conference, TQC 2010, Leeds, UK, April 13-15, 2010, Revised Selected Papers. Heidelberg: Springer Berlin. 2011. S. 47-62. (Lecture Notes in Computer Science). doi: 10.1007/978-3-642-18073-6_5