Zeige Ergebnisse 181 - 200 von 340


Wei TC, Affleck I, Raussendorf R. Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation. Physical Review A - Atomic, Molecular, and Optical Physics. 2012 Sep 21;86(3):032328. doi: 10.48550/arXiv.1009.2840, 10.1103/PhysRevA.86.032328
Kiukas J, Ruschhaupt A, Schmidt PO, Werner RF. Exact energy-time uncertainty relation for arrival time by absorption. Journal of Physics A: Mathematical and Theoretical. 2012 Apr 19;45(18):185301. doi: 10.1088/1751-8113/45/18/185301
Yao XC, Wang TX, Chen HZ, Gao WB, Fowler AG, Raussendorf R et al. Experimental demonstration of topological error correction. NATURE. 2012 Feb 23;482(7386):489-494. doi: 10.48550/arXiv.1202.5459, 10.1038/nature10770
Sarvepalli P, Raussendorf R. Efficient decoding of topological color codes. Physical Review A - Atomic, Molecular, and Optical Physics. 2012 Feb 13;85(2):022317. doi: 10.48550/arXiv.1111.0831, 10.1103/PhysRevA.85.022317
Werner RF. Aspects of nonlinearity in quantum mechanics. in Proceedings of Nonlinear Dynamics of Electronic Systems, NDES 2012. Institute of Electrical and Electronics Engineers Inc. 2012. S. 86-89. 6292858. (Proceedings of Nonlinear Dynamics of Electronic Systems, NDES 2012).
Ahlbrecht A, Cedzich C, Matjeschk R, Scholz VB, Werner AH, Werner RF. Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations. Quantum Inf. Process. 2012;11:1219-1249. doi: 10.1007/s11128-012-0389-4
Kiukas J, Lahti P, Schultz J, Werner RF. Characterization of informational completeness for covariant phase space observables. J. Math. Phys. 2012;53:102103. doi: 10.1063/1.4754278
Furrer F, Franz T, Berta M, Leverrier A, Scholz VB, Tomamichel M et al. Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks. Phys. Rev. Lett. 2012;109:100502. doi: 10.1103/PhysRevLett.109.100502, 10.1103/PhysRevLett.112.019902
Ahlbrecht A, Richter F, Werner RF. How long can it take for a quantum channel to forget everything? Int. J. Quant. Inf. 2012;10:1250057. doi: 10.1142/S0219749912500578
Gross D, Nesme V, Vogts H, Werner RF. Index theory of one dimensional quantum walks and cellular automata. Comm. Math. Phys. 2012;310:419-454. doi: 10.1007/s00220-012-1423-1
Nachtergaele B, Scholz VB, Werner RF. Local Approximation of Observables and Commutator Bounds. in Janas J, Kurasov P, Naboko S, Hrsg., Operator Methods in Mathematical Physics. Birkhäuser. 2012. S. 143-150. (Operator Theory: Advances and Applications). doi: 10.1007/978-3-0348-0531-5_8
Ahlbrecht A, Alberti A, Meschede D, Scholz VB, Werner AH, Werner RF. Molecular Binding in Interacting Quantum Walks. New J. Phys. 2012;14:073050. doi: 10.1088/1367-2630/14/7/073050
Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner RF et al. Observation of one-way Einstein-Podolsky-Rosen steering. Nature photonics. 2012;6:598-601. doi: 10.1038/nphoton.2012.202
Raussendorf R, Wei TC. Quantum Computation by Local Measurement. Annual Review of Condensed Matter Physics. 2012;3(1):239-261. Epub 2011 Dez 13. doi: 10.48550/arXiv.1208.0041, 10.1146/annurev-conmatphys-020911-125041
Matjeschk R, Ahlbrecht A, Enderlein M, Cedzich C, Werner AH, Keyl M et al. Quantum Walks with Non-Orthogonal Position States. Phys. Rev. Lett. 2012;109:240503. doi: 10.1103/PhysRevLett.109.240503
Gütschow J, Nesme V, Werner RF. Self-similarity of cellular automata on abelian groups. Journal of cellular automata. 2012;7(2):83-113.


Wei TC, Raussendorf R, Kwek LC. Quantum computational universality of the Cai-Miyake-Dür-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains. Physical Review A - Atomic, Molecular, and Optical Physics. 2011 Okt 19;84(4):042333. doi: 10.48550/arXiv.1105.5635, 10.1103/PhysRevA.84.042333
Raußendorf R, Sarvepalli P, Wei TC, Haghnegahdar P. Measurement-based quantum computation: a quantum-mechanical toy model for spacetime? 2011 Aug 29. Epub 2011 Aug 29. doi: 10.48550/arXiv.1108.5774
Li Y, Browne DE, Kwek LC, Raussendorf R, Wei TC. Thermal States as Universal Resources for Quantum Computation with Always-On Interactions. Physical review letters. 2011 Aug 1;107(6):060501. doi: 10.1103/PhysRevLett.107.060501, 10.48550/arXiv.1102.5153
Eberle T, Händchen V, Duhme J, Franz T, Werner RF, Schnabel R. Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source. Phys. Rev. A. 2011 Mai 1;83:052329. doi: 10.1103/PhysRevA.83.052329