Scaling limit of the ground state Bethe roots for the inhomogeneous XXZ spin - 1/2 chain

verfasst von
Sascha Gehrmann, Gleb A. Kotousov, Sergei L. Lukyanov
Abstract

It is known that for the Heisenberg XXZ spin-\(\frac{1}{2}\) chain in the critical regime, the scaling limit of the vacuum Bethe roots yields an infinite set of numbers that coincide with the energy spectrum of the quantum mechanical 3D anharmonic oscillator. The discovery of this curious relation, among others, gave rise to the approach referred to as the ODE/IQFT (or ODE/IM) correspondence. Here we consider a multiparametric generalization of the Heisenberg spin chain, which is associated with the inhomogeneous six-vertex model. When quasi-periodic boundary conditions are imposed the lattice system may be explored within the Bethe Ansatz technique. We argue that for the critical spin chain, with a properly formulated scaling limit, the scaled Bethe roots for the ground state are described by second order differential equations, which are multi-parametric generalizations of the Schrödinger equation for the anharmonic oscillator.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
Rutgers University
Typ
Artikel
Journal
Nuclear Physics B
Band
1006
Anzahl der Seiten
47
ISSN
0550-3213
Publikationsdatum
09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2406.12102 (Zugang: Offen)
https://doi.org/10.1016/j.nuclphysb.2024.116624 (Zugang: Offen)