Aktuelle Publikationen aus Holger Frahms Forschungsgruppe
Westerfeld, D., Großpietsch, M., Kakuschke, H., & Frahm, H. (2023). Factorization of density matrices in the critical RSOS models.
Frahm, H., & Gehrmann, S. (2023). Integrable boundary conditions for staggered vertex models. Journal of Physics A: Mathematical and Theoretical, 56(2), [025001].
doi.org/10.48550/arXiv.2209.06182
,Frahm, H., & Martins, M. J. (2022). \(OSp(n|2m)\) quantum chains with free boundaries. Nuclear Physics B, 980, [115799].
Frahm, H., & Gehrmann, S. (2022). Finite size spectrum of the staggered six-vertex model with \(U_q(sl(2))\)-invariant boundary conditions. Journal of High Energy Physics, 2022(1), [70].
Frahm, H., & Westerfeld, D. (2021). Density matrices in integrable face models. SciPost Physics, 11(3), [057].
Borcherding, D., & Frahm, H. (2019). Condensates of interacting non-Abelian SO(5)Nf anyons. Journal of High Energy Physics, 2019(10), [54].
Frahm, H., Hobuß, K., & Martins, M. J. (2019). On the critical behaviour of the integrable q-deformed OSp(3|2) superspin chain. Nuclear Physics B, 946, [114697].
doi.org/10.1016/j.nuclphysb.2019.114697
,Frahm, H., Morin-Duchesne, A., & Pearce, P. A. (2019). Extended T-systems, Q matrices and T-Q relations for sℓ(2) models at roots of unity. Journal of Physics A: Mathematical and Theoretical, 52(28), [285001].
Borcherding, D., & Frahm, H. (2018). Condensation of non-Abelian SU(3) Nf anyons in a one-dimensional fermion model. Journal of Physics A: Mathematical and Theoretical, 51(49), [495002].
Frahm, H., & Martins, M. J. (2018). The fine structure of the finite-size effects for the spectrum of the OSp(n|2m) spin chain. Nuclear Physics B, 930, 545-562.
doi.org/10.1016/j.nuclphysb.2018.03.016
,Borcherding, D., & Frahm, H. (2018). Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model. Journal of Physics A: Mathematical and Theoretical, 51(19), [195001].
Finch, P. E., Flohr, M., & Frahm, H. (2018). Zn clock models and chains of so(n)2 non-Abelian anyons: Symmetries, integrable points and low energy properties. Journal of Statistical Mechanics: Theory and Experiment, 2018(2), [023103].