Aktuelle Publikationen aus Holger Frahms Forschungsgruppe
Zeige Ergebnisse 1 - 20
Frahm, H., Klümper, A., Wagner, D., & Zhang, X. (2025). Non-linear integral equations for the XXX spin-1/2 quantum chain with non-diagonal boundary fields. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2502.07229
Mehr...
Frahm, H., & Gehrmann, S. (2024). Finite-size spectrum of the staggered six-vertex model with antidiagonal boundary conditions. Nuclear Physics B, 1006, Artikel 116655. https://doi.org/10.1016/j.nuclphysb.2024.116655
Mehr...
Gehrmann, S., Kotousov, G. A., & Lukyanov, S. L. (2024). Scaling limit of the ground state Bethe roots for the inhomogeneous XXZ spin - 1/2 chain. Nuclear Physics B, 1006, Artikel 116624. https://doi.org/10.48550/arXiv.2406.12102, https://doi.org/10.1016/j.nuclphysb.2024.116624
Mehr...
Kotousov, G. A., & Shabetnik, D. A. (2024). Integrability and renormalizability for the fully anisotropic SU(2) principal chiral field and its deformations. Journal of high energy physics, 8(239), Artikel 239. https://doi.org/10.1007/JHEP08(2024)239
Mehr...
Frahm, H., Gehrmann, S., & Kotousov, G. A. (2024). Scaling limit of the staggered six-vertex model with \(U_q(\mathfrak{sl}(2))\) invariant boundary conditions. SciPost Physics, 16(6), Artikel 149. https://doi.org/10.21468/SciPostPhys.16.6.149
Mehr...
Frahm, H., Gehrmann, S., Nepomechie, R. I., & Retore, A. L. (2023). The D(2)3 spin chain and its finite-size spectrum. Journal of High Energy Physics, 2023(11), Artikel 095. https://doi.org/10.1007/JHEP11(2023)095
Mehr...
Frahm, H., & Martins, M. J. (2023). Uq[OSp(3|2)] quantum chains with quantum group invariant boundaries. Nuclear Physics B, 995, Artikel 116329. https://doi.org/10.48550/arXiv.2307.09412, https://doi.org/10.1016/j.nuclphysb.2023.116329
Mehr...
Westerfeld, D., Großpietsch, M., Kakuschke, H., & Frahm, H. (2023). Factorization of density matrices in the critical RSOS models. Journal of Statistical Mechanics: Theory and Experiment, 2023, Artikel 083104. https://doi.org/10.1088/1742-5468/aceeef
Mehr...
Kotousov, G. A., & Lukyanov, S. L. (2023). On the scaling behaviour of an integrable spin chain with Zr symmetry. Nuclear Physics, Section B, 993, Artikel 116269. https://doi.org/10.1016/j.nuclphysb.2023.116269
Mehr...
Frahm, H., & Gehrmann, S. (2023). Integrable boundary conditions for staggered vertex models. Journal of Physics A: Mathematical and Theoretical, 56(2), Artikel 025001. https://doi.org/10.48550/arXiv.2209.06182, https://doi.org/10.1088/1751-8121/acb29f
Mehr...
Kotoousov, G. A., Lacroix, S., & Teschner, J. (2022). Integrable sigma models at RG fixed points: quantisation as affine Gaudin models. Annales Henri Poincaré, 25, 843.
Mehr...
Frahm, H., & Martins, M. J. (2022). (𝑂𝑆𝑝(𝑛|𝟸𝑚) quantum chains with free boundaries. Nuclear Physics B, 980, Artikel 115799. https://doi.org/10.1016/j.nuclphysb.2022.115799
Mehr...
Frahm, H., & Gehrmann, S. (2022). Finite size spectrum of the staggered six-vertex model with 𝑈𝑞(𝑠𝑙(𝟸))-invariant boundary conditions. Journal of High Energy Physics, 2022(1), Artikel 70. https://doi.org/10.1007/JHEP01(2022)070
Mehr...
Kotoousov, G. A., & Lukyanov, S. (2021). ODE/IQFT correspondence for the generalized affine sl(2) Gaudin model. JHEP, 2021, Artikel 201. https://doi.org/10.1007/JHEP09%282021%29201
Mehr...
Frahm, H., & Westerfeld, D. (2021). Density matrices in integrable face models. SciPost Physics, 11(3), Artikel 057. https://doi.org/10.21468/SciPostPhys.11.3.057
Mehr...
Bazhanov, V., Kotoousov, G. A., & Lukyanov, S. L. (2021). Scaling limit of the Z2 invariant inhomogeneous six-vertex model. Nuclear Physics B, 965.
Mehr...
Bazhanov, V., Kotoousov, G. A., & Lukyanov, S. (2021). Equilibrium density matrices for the 2D black hole sigma models from an integrable spin chain. Journal of High Energy Physics, 2021, Artikel 169.
Mehr...
Kotoousov, G. A. (2021). Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 17, 25-54.
Mehr...
Kotoousov, G. A., & Lukyanov, S. (2020). Spectrum of the reflection operators in different integrable structures. Journal of High Energy Physics, 2020, Artikel 29.
Mehr...
Borcherding, D., & Frahm, H. (2019). Condensates of interacting non-Abelian SO(5)Nf anyons. Journal of High Energy Physics, 2019(10), Artikel 54. https://doi.org/10.1007/JHEP10(2019)054
Mehr...