Selected Publications

The one way quantum computer (QCc)

The one way quantum computer (QCc), aka. measurement based quantum computation. I have invented the QCc jointly with Hans Briegel (US patent 7,277,872). It is a scheme of universal quantum computation by local measurements on a multi-particle entangled quantum state, the so-called cluster state. Quantum information is written into the cluster state, processed and read out by one-qubit measurements only. As the computation proceeds, the entanglement in the resource cluster state is progressively destroyed. Measurements replace unitary evolution as the elementary process driving a quantum computation.

A universal resource for the QCc is the cluster state, a highly entangled mult-qubit quantum state that can be easily generated unitarily by the Ising interaction on a square lattice. In the figure to the left, the qubits forming the cluster state are represented by dots and arrows. The symbol used indicates the basis of local measurement. Dots represent cluster qubits measured in the eigenbasis of the Pauli operator Z, arrows denote measurement in a basis in the equator of the Bloch sphere. The pattern of measurement bases can be regarded as representing a quantum circuit, i.e., the "vertical" direction on the cluster specifies the location of a logical qubit in a quantum register, and the "horizontal" direction on the cluster represents circuit time. However, this simple picture should be taken with a grain of salt: The optimal temporal order of measurements has very little to do with the temporal sequence of gates in the corresponding circuit.

Other Publications

Showing results 21 - 40 out of 86


Okay C, Raussendorf R. Homotopical approach to quantum contextuality. Quantum. 2020 Jan 5;4(217). doi: 10.22331/q-2020-01-05-217
Raussendorf R, Bermejo-Vega J, Tyhurst E, Okay C, Zurel M. Phase-space-simulation method for quantum computation with magic states on qubits. Physical Review A. 2020 Jan 31;101(1):012350. doi: 10.48550/arXiv.1905.05374, 10.1103/PhysRevA.101.012350, 10.1103/PhysRevA.105.039902
Yan X, Asavanant W, Kamakari H, Wu J, Young J, Raussendorf R. A Quantum Computer Architecture Based on Silicon Donor Qubits Coupled by Photons. In Quantum 2.0 2020. Optica Publishing Group (formerly OSA). 2020. QTu8A.15. (Optics InfoBase Conference Papers). doi: 10.1364/QUANTUM.2020.QTu8A.15
Yan X, Asavanant W, Kamakari H, Wu J, Young JF, Raussendorf R. A Quantum Computer Architecture Based on Silicon Donor Qubits Coupled by Photons. Advanced Quantum Technologies. 2020 Jun 2;3(11):2000011. doi: 10.1002/qute.202000011
Zurel M, Okay C, Raussendorf R. Hidden Variable Model for Universal Quantum Computation with Magic States on Qubits. Physical review letters. 2020 Dec 23;125(26):260404. doi: 10.48550/arXiv.2004.01992, 10.1103/PhysRevLett.125.260404


Raussendorf R. Cohomological framework for contextual quantum computations. Quantum Information and Computation. 2019 Nov;19(13-14):1141-1170.
Raussendorf R, Okay C, Wang DS, Stephen DT, Nautrup HP. Computationally Universal Phase of Quantum Matter. Physical review letters. 2019 Mar 4;122(9):090501. doi: 10.48550/arXiv.1803.00095, 10.1103/PhysRevLett.122.090501
Stephen DT, Nautrup HP, Bermejo-Vega J, Eisert J, Raussendorf R. Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter. Quantum. 2019 May 20;3. doi: 10.22331/q-2019-05-20-142


Bermejo-Vega J, Hangleiter D, Schwarz M, Raussendorf R, Eisert J. Architectures for Quantum Simulation Showing a Quantum Speedup. Physical Review X. 2018 Apr 9;8(2):021010. doi: 10.1103/PhysRevX.8.021010
Monroe C, Kim J, Raußendorf R. Fault-tolerant scalable modular quantum computer architecture with an enhanced control of multi-mode couplings between trapped ion qubits. US9858531B1. 2018 Jan 2. doi:
Okay C, Tyhurst E, Raussendorf R. The cohomological and the resource-theoretic perspective on quantum contextuality: Common ground through the contextual fraction. Quantum Information and Computation. 2018 Dec;18(15-16):1272-1294.
Wang DS, Affleck I, Raussendorf R. Topological Qubits from Valence Bond Solids. Physical review letters. 2018 May 17;120(20):200503. doi: 10.1103/PhysRevLett.120.200503, 10.48550/arXiv.1708.04756


Bermejo-Vega J, Delfosse N, Browne DE, Okay C, Raussendorf R. Contextuality as a Resource for Models of Quantum Computation with Qubits. Physical review letters. 2017 Sept 21;119(12):120505. doi: 10.1103/PhysRevLett.119.120505
Delfosse N, Okay C, Bermejo-Vega J, Browne DE, Raussendorf R. Equivalence between contextuality and negativity of the Wigner function for qudits. New journal of physics. 2017 Dec 8;19(12):123024. doi: 10.1088/1367-2630/aa8fe3
Okay C, Roberts SAM, Bartlett SD, Raussendorf R. Topological Proofs of Contextuality in Qunatum Mechanics. Quantum Information and Computation. 2017;17(13-14):1135-1166. doi: 10.48550/arXiv.1611.07332, 10.26421/QIC17.13-14
Raussendorf R, Browne DE, Delfosse N, Okay C, Bermejo-Vega J. Contextuality and Wigner-function negativity in qubit quantum computation. Physical Review A. 2017 May 17;95(5):052334. doi: 10.1103/PhysRevA.95.052334, 10.48550/arXiv.1511.08506
Raussendorf R, Wang DS, Prakash A, Wei TC, Stephen DT. Symmetry-protected topological phases with uniform computational power in one dimension. Physical Review A. 2017 Jul 5;96(1):012302. doi: 10.1103/PhysRevA.96.012302
Stephen DT, Wang DS, Prakash A, Wei TC, Raussendorf R. Computational Power of Symmetry-Protected Topological Phases. Physical review letters. 2017 Jul 5;119(1):010504. doi: 10.1103/PhysRevLett.119.010504
Wang DS, Stephen DT, Raussendorf R. Qudit quantum computation on matrix product states with global symmetry. Physical Review A. 2017 Mar 9;95(3):032312. doi: 10.48550/arXiv.1609.07174, 10.1103/PhysRevA.95.032312


Raussendorf R, Sarvepalli P, Wei TC, Haghnegahdar P. Symmetry constraints on temporal order in measurement-based quantum computation. Information and computation. 2016 Oct 1;250:115-138. Epub 2016 Mar 2. doi: 10.48550/arXiv.1210.0620, 10.1016/j.ic.2016.02.010