Publications

Selected Publications

The one way quantum computer (QCc)

The one way quantum computer (QCc), aka. measurement based quantum computation. I have invented the QCc jointly with Hans Briegel (US patent 7,277,872). It is a scheme of universal quantum computation by local measurements on a multi-particle entangled quantum state, the so-called cluster state. Quantum information is written into the cluster state, processed and read out by one-qubit measurements only. As the computation proceeds, the entanglement in the resource cluster state is progressively destroyed. Measurements replace unitary evolution as the elementary process driving a quantum computation.

A universal resource for the QCc is the cluster state, a highly entangled mult-qubit quantum state that can be easily generated unitarily by the Ising interaction on a square lattice. In the figure to the left, the qubits forming the cluster state are represented by dots and arrows. The symbol used indicates the basis of local measurement. Dots represent cluster qubits measured in the eigenbasis of the Pauli operator Z, arrows denote measurement in a basis in the equator of the Bloch sphere. The pattern of measurement bases can be regarded as representing a quantum circuit, i.e., the "vertical" direction on the cluster specifies the location of a logical qubit in a quantum register, and the "horizontal" direction on the cluster represents circuit time. However, this simple picture should be taken with a grain of salt: The optimal temporal order of measurements has very little to do with the temporal sequence of gates in the corresponding circuit.

Other Publications

Showing results 1 - 20 out of 86

2023


Adhikary A, Yang W, Raußendorf R. Counter-intuitive yet efficient regimes for measurement based quantum computation on symmetry protected spin chains. 2023 Jul 18. Epub 2023 Jul 18. doi: 10.48550/arXiv.2307.08903
Horodecki K, Zhou J, Stankiewicz M, Salazar R, Horodecki P, Raussendorf R et al. The rank of contextuality. New journal of physics. 2023 Jul 10;25(7):073003. doi: 10.1088/1367-2630/acdf78
Qin Z, Azses D, Sela E, Raußendorf R, Scarola VW. Redundant String Symmetry-Based Error Correction: Experiments on Quantum Devices. 2023 Oct 19. Epub 2023 Oct 19. doi: 10.48550/arXiv.2310.12854
Qin Z, Scarola VW, Raußendorf R, Sela E, Azses D. Symmetry Protection of Measurement-based Teleportation in Ising Graphs. 2023. Abstract from APS March Meeting 2023, Las Vegas, Nevada, United States.
Raussendorf R, Herringer P. Classification of measurement-based quantum wire in stabilizer PEPS. Quantum. 2023 Jun 12;7:1041. doi: 10.22331/q-2023-06-12-1041
Raussendorf R. Putting Paradoxes to Work: Contextuality in Measurement-Based Quantum Computation. In Palmigiano A, Sadrzadeh M, editors, Samson Abramsky on Logic and Structure in Computer Science and Beyond. Springer Science and Business Media B.V. 2023. p. 595-622. (Outstanding Contributions to Logic). doi: 10.48550/arXiv.2208.06624, 10.1007/978-3-031-24117-8_16
Raussendorf R, Okay C, Zurel M, Feldmann P. The role of cohomology in quantum computation with magic states. Quantum. 2023 Apr 13;7. doi: 10.48550/arXiv.2110.11631, 10.22331/q-2023-04-13-979
Zurel M, Raußendorf R, Okay C. Simulating quantum computation with magic states: How many "bits" for "it"? 2023 May 26. Epub 2023 May 26. doi: 10.48550/arXiv.2305.17287
Zurel M, Cohen LZ, Raußendorf R. Simulation of quantum computation with magic states via Jordan-Wigner transformations. 2023 Jul 29. Epub 2023 Jul 29. doi: 10.48550/arXiv.2307.16034

2022


Lee WR, Qin Z, Raussendorf R, Sela E, Scarola VW. Measurement-based time evolution for quantum simulation of fermionic systems. Physical Review Research. 2022 Jul 25;4(3):L032013. doi: 10.1103/PhysRevResearch.4.L032013
Raußendorf R, Yang W, Adhikary A. Measurement-based quantum computation in finite one-dimensional systems: string order implies computational power. 2022 Oct 11. Epub 2022 Oct 11. doi: 10.48550/arXiv.2210.05089
Stephen DT, Ho WW, Wei TC, Raußendorf R, Verresen R. Universal measurement-based quantum computation in a one-dimensional architecture enabled by dual-unitary circuits. 2022 Sept 13. Epub 2022 Sept 13. doi: 10.48550/arXiv.2209.06191
Watkins GW, Nguyen HM, Lau HK, Paler A, Pearce S, Raußendorf R et al.. Lattice Surgery Quantum Error Correction Compiler. 2022. Abstract from APS March Meeting 2022, Chicago, United States.
Wei TC, Raußendorf R, Affleck I. Some Aspects of Affleck–Kennedy–Lieb–Tasaki Models: Tensor Network, Physical Properties, Spectral Gap, Deformation, and Quantum Computation. In Bayat A, Bose S, Johannesson H, editors, Entanglement in Spin Chains: From Theory to Quantum Technology Applications. Springer, Cham. 2022. p. 9–125. (Quantum Science and Technology). doi: 10.48550/arXiv.2201.09307, 10.1007/978-3-031-03998-0_5
Wong G, Raußendorf R, Czech B. The Gauge Theory of Measurement-Based Quantum Computation. 2022 Jul 20. Epub 2022 Jul 20. doi: 10.48550/arXiv.2207.10098
Yang W, Nocera A, Herringer P, Raussendorf R, Affleck I. Symmetry analysis of bond-alternating Kitaev spin chains and ladders. Physical Review B. 2022 Mar 25;105(9):094432. doi: 10.48550/arXiv.2201.03132, 10.1103/PhysRevB.105.094432

2021


Okay C, Zurel M, Raussendorf R. On the extremal points of the Λ-polytopes and classical simulation of quantum computation with magic states. Quantum Information and Computation. 2021 Nov;21(13-14):1091–1110. doi: 10.48550/arXiv.2104.05822, 10.26421/QIC21.13-14-2, 10.26421/QIC22.7-8-4
Raußendorf R, Zurel M, Okay C. Method of simulating a quantum computation, system for simulating a quantum computation, method for issuing a computational key, system for issuing a computational key. WO2021195783A1. 2021 Oct 7.
Zurel M, Okay C, Raußendorf R, Heimendahl A. Hidden variable model for quantum computation with magic states on qudits of any dimension. 2021 Oct 23. Epub 2021 Oct 23. doi: 10.48550/arXiv.2110.12318

2020


Azses D, Haenel R, Naveh Y, Raussendorf R, Sela E, Dalla Torre EG. Identification of Symmetry-Protected Topological States on Noisy Quantum Computers. Physical review letters. 2020 Sept 14;125(12):120502. doi: 10.1103/PhysRevLett.125.120502